Mixed Methods

Evaluation of the Cognitive, Psychometric, and Instructional Affordances of Curriculum-embedded Assessments: A Comprehensive Validity-based Approach

This project’s overarching goal is to evaluate the assessment components embedded within two NSF-supported mathematics curricula: Everyday Mathematics and Math Trailblazers. The investigators will apply a comprehensive validity perspective that integrates a variety of empirical evidence regarding the cognitive, psychometric, and instructional affordances of multiple assessments embedded in these curricula as part of their overall instructional design.

Partner Organization(s): 
Award Number: 
0732090
Funding Period: 
Tue, 01/01/2008 to Mon, 12/31/2012
Project Evaluator: 
James Minstrell

The Development of Student Cohorts for the Enhancement of Mathematical Literacy in Under Served Populations

This project is developing and conducting research on the Cohort Model for addressing the mathematics education of students that perform in the bottom quartile on state and district tests. The predicted outcome is that most students will remain in the cohort for all four years and that almost all of those who do will perform well enough on college entrance exams to be admitted and will test out of remedial mathematics courses.

Lead Organization(s): 
Award Number: 
0822175
Funding Period: 
Mon, 09/01/2008 to Wed, 08/31/2011
Project Evaluator: 
Inverness Research, Inc.
Full Description: 

Project Summary

This is a Full Research and Development proposal which addresses the Contextual Challenge: How can the learning of significant STEM content be achieved to ensure public literacy and workforce readiness?  Our nation is failing to prepare millions of youth for meaningful and productive participation in an information-based society. The target population are those students performing in the bottom quartile on state and national tests, many of these are children of color living in under resourced communities, and most of these young people do not finish high school and end up diverted into an underground economy, gangs, and prisons.   

This project addresses this failure by further developing and testing an approach that the Algebra Project is developing for high school mathematics, in which students form a cohort that stays together for all four years of high school, study mathematics every day using project-designed curricular materials with teachers who participate in project professional development, and are supported by local community groups. 

The Algebra Project seeks to stimulate a demand for math literacy in those most affected by its absence -- the young people themselves.  It stresses the importance of peer culture, using lessons learned from experiences in the 1960s Civil Rights Movement, as well as in the emergence of project graduates into a group with their own perspectives and initiatives. 

In the 60s, project founders learned how to use the meeting place as a tool to engage and empower the people that the meeting was intended to serve.  In the proposed project, there are two meeting places: the students’ high school mathematics classroom and supplementary education activities; and the network of sites around the country that are communicating and learning how to develop and implement cohorts. Young peoples’ roles in each of these settings are key to creating the motivation and commitment needed for student success as well as developing local interest.  The combination of classroom and professional development work, innovative curriculum materials, and community involvement creates an intervention that can significantly transform the peer culture, even in the face of negative forces.

The Algebra Project has developed a cohort model that we predict will stimulate and enable students to pass the state and district mandated tests in mathematics, to pass the mathematics portions of any graduation test, and to score well enough on the SAT or ACT to enter college, and to place into mathematics courses for college credit (not remedial courses).  Building on previous awards, the project will continue to research and develop the cohort model, and will create a small network of cohorts to establish that our model can be widely successful.

Intellectual merit:  This project will demonstrate how students entering high school performing in the bottom quartile nationally and state-wide can be prepared for college-level mathematics, using lessons learned from many years of past experience working in such communities and in their middle schools, and more recently in their high schools and in collaboration with university mathematicians.  The research results are critical to the nation’s learning how to improve mathematics achievement for all children – to gaining a sense of what such a program “looks and feels like”, and what resources and commitments are required, from which institutions. 

Broader impact:  The results of this discovery research project will advance understanding of how to improve mathematics learning and achievement in low performing districts, so students are prepared to take college mathematics without repeating high school mathematics in early college.  It will also demonstrate the resources and commitments needed to reach this result.

Learning Science as Inquiry with the Urban Advantage: Formal-Informal Collaborations to Increase Science Literacy and Student Learning

This project hypothesizes that learners must have access to the real work of scientists if they are to learn both about the nature of science and to do inquiry themselves. It explores the question "How can informal science education institutions best design resources to support teachers, school administrators, and families in the teaching and learning of students to conduct scientific investigations and better understand the nature of science?"

Award Number: 
0918560
Funding Period: 
Tue, 09/01/2009 to Sat, 08/31/2013
Project Evaluator: 
Learning Innovations at WestEd
Full Description: 

The American Museum of Natural History and Michigan State University propose a research and development project focused on DR-K12 challenge #2 and the hypothesis that learners must have access to the real work of scientists if they are to learn both about the nature of science and to do inquiry themselves. The overarching questions that drive this project are: How can informal science education institutions best design resources to support teachers, school administrators, and families in the teaching and learning of students to conduct scientific investigations and better understand the nature of science? How are these resources then used, and to what extent and in what ways do they contribute to participants’ learning? How are those resources then used for student learning? Answering these questions will involve the use of existing and new resources, enhancement of existing relationships, and a commitment to systematically collect evidence. Urban Advantage (UA) is a middle school science initiative involving informal science education institutions that provides professional development for teachers and hands-on learning for students to learn how to conduct scientific investigations. This project will (1) refine the UA model by including opportunities to engage in field studies and the use of authentic data sets to investigate the zebra mussel invasion of the Hudson River ecosystem; (2) extend the resources available to help parents, administrators, and teachers understand the nature of scientific work; and (3) integrate a research agenda into UA. Teaching cases will serve as resources to help teachers, students, administrators, and families understand scientific inquiry through research on freshwater ecosystems, and—with that increased understanding—support student learning. Surveys, observations, and assessments will be used to document and understand the effects of professional development on teachers, students, administrators, and parents. The study will analyze longitudinal, multivariate data in order to identify associations between professional development opportunities for teachers, administrators, and parents, their use of resources to support their own learning and that of students, middle school teachers’ instructional practices, and measures of student learning.

STEM Fusion

This project revises and tests integrated STEM modules and an accompanying professional development component that promote differentiated instruction in order to facilitate high school teachers' instruction of 21st century skills and integrated STEM content. STEM Fusion is a multi-tiered project focusing on the refinement of draft professional resources and the development of teacher skills related to differentiated instruction within integrated STEM instruction.

Lead Organization(s): 
Award Number: 
0733198
Funding Period: 
Wed, 08/15/2007 to Sat, 07/31/2010
Full Description: 

This project revises and tests integrated STEM modules and an accompanying professional development component that promote differentiated instruction in order to facilitate high school teachers' instruction of 21st Century skills and integrated STEM content. STEM Fusion is a multi-tiered project focusing on the refinement of draft professional resources and the development of teacher skills related to differentiated instruction within integrated STEM instruction.

Project goals include: refining, testing, and finalizing draft curriculum modules in science, mathematics, and engineering; developing, refining, and testing a professional development process that promotes the effective curricular integration of science, technology, engineering and math content into real-world applications; and the use of pedagogical strategies that promote differentiated instruction and standards-based curriculum; and disseminating widely models of effective STEM integration utilizing differentiated instruction in the classrooms through the NSDL database, WVDE communication channels, and a STEM Fusion Web portal.

High school teachers will participate in revising draft modules and testing an implementation model that increases the focus on content and pedagogical knowledge. The STEM Fusion modules will utilize differentiated instruction to assist teachers in diagnosing the differences in readiness, interests and learning styles of all students in the class, using a variety of performance indicators and formative assessments. Participating teachers will apply critical math, science, and technology knowledge while they test and revise tiered lessons during summer learning experiences and in their classrooms. The curriculum, aligned with current West Virginia and national science, technology, engineering, mathematics standards, as well as with 21st Century skills, will be refined, pilot tested, further refined, and field tested. An integral part of the professional development component and the STEM Fusion curriculum will be effective strategies for teaching special needs, ESL, and advanced students. Teachers will be supported by content-expert facilitators, who will guide the module revision and implementation process and group reflection.

Reform Math Students' Transition from High School to College

This project has two goals:

1) to discover methods that can efficiently obtain information about the effects of high school programs on eventual college success. Methods we are considering include obtaining transcripts from post-secondary institutions, surveying high school graduates, and obtaining information from the National Student Clearinghouse.

2) to explore how students who studied Contemporary Mathematics in Context (Core Plus) or the Integrated Mathematics Program (IMP) fare in post secondary institutions.

Lead Organization(s): 
Award Number: 
0732161
Funding Period: 
Sat, 09/15/2007 to Tue, 08/31/2010
Full Description: 

One important measure of a high school mathematics program's effectiveness is their graduates? success in post-secondary math courses and more generally their success in obtaining post-secondary degrees. This study will utilize two approaches to collect data that explores questions pertaining to students? actual post-secondary preparedness. The first approach will follow students forward from high school and analyze their college transcripts. This approach has proven successful in development of national data bases such as the National Educational Longitudinal Study of 1988 (NELS 88). The second approach will collect data from the set of Institutions of Higher Education to which 50% or more students from the studied high schools matriculate. Both approaches will improve on prior research, which has either, a) reported case studies of small numbers of students, generally without comparison groups, b) relied on self-reports by student volunteers, or c) analyzed the impact of a high school program by reporting achievement of students at a single university, to which only a small proportion of the high school's graduates matriculate. The proposed study would begin to fill a serious gap in the mathematics community's knowledge about how NSF sponsored curriculum materials affect students. The proposed study will also provide school districts and researchers with practical and immediately useful knowledge about valid techniques for data collection. Analyzing college transcripts provides more complete data than does collecting summary data from college registrars. However, analyzing students? transcripts is more expensive and time-consuming. This study will determine if the summary data provided by college registrars from the subset of colleges which account for at least 50% of a high school?s graduates produces valid conclusions that are similar to the conclusions produced by analyzing transcripts from a random sample of all graduates. These results will have broad impact on assessing mathematics curricula.

Planting Science Research in Education

This project is implementing a program of professional development for teachers and web interface that links scientists with urban classrooms. Scientist mentors work with students and teachers through the web to carry out an original "authentic" inquiry project in plant science. The classroom intervention involves high school biology students working in assigned teams to generate their own research questions in plant science centered on core biology concepts from the National Science Education Standards.

Lead Organization(s): 
Award Number: 
0733280
Funding Period: 
Sat, 09/15/2007 to Wed, 05/30/2012
Project Evaluator: 
Jane Larson, BSCS
Full Description: 

Project Publications and Presentations:

Hemingway, Claire & Packard, Carol (2011, April). Seeds of Wonder and Discovery. Science Scope, v. 34 (8), p. 38.

Ecosystems and Evidence Project (Collaborative Research: Berkowitz)

This exploratory research and development project addresses the question, "Can students develop an understanding of the ecological nature of science (ENOS) in high school biology and environmental science classes that is useful and productive in environmental citizenship?" To address this question, the project will identify the essential elements of ENOS, investigate how these can be taught and learned, and explore how ENOS skills and understandings are used to enhance environmental citizenship.

Award Number: 
0918610
Funding Period: 
Tue, 09/01/2009 to Fri, 08/31/2012
Project Evaluator: 
Jackie DeLisi, Education Development Center, Inc. (EDC)

Logging Opportunities in Online Programs for Science (LOOPS): Student and Teacher Learning

The project makes use of technology to create timely, valid, and actionable reports to teachers by analyzing assessments and logs of student actions generated in the course of using computer-based curriculum materials. The reports allow teachers to make data-based decisions about alternative teaching strategies. The technology supports student collaborations and the assignment of different learning activities to groups, an essential function needed for universal design for learning (UDL).

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
0733299
Funding Period: 
Tue, 01/01/2008 to Fri, 12/31/2010
Project Evaluator: 
David Reider, Education Design Inc.

High Adventure Science

The High Adventure Science project is bringing some of the big unanswered questions in Earth and space science to middle and high school science classrooms. Students will explore the mechanisms of climate change, consider the possibility of life on other planets, and devise solutions to the impending shortage of fresh water. Each curriculum module features interviews with scientists currently working on the same unanswered question.
Project Email: 
Lead Organization(s): 
Partner Organization(s): 
Award Number: 
0929774
Funding Period: 
Tue, 09/15/2009 to Tue, 08/31/2010

Project Delta: Digital Environments for the Learning and Teaching of Algebra

The purpose of Project Delta is two-fold: (1) to extend an existing library of 17 interacting CD-ROM digital learning environments on numbers and operations by adding an algebra strand, and (2) to evaluate the impact of the new algebra materials on teacher development. Each of the digital environments features classroom sessions that allow for exploration of a mathematics topic, children learning over time, and teachers? instructional techniques.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
0822034
Funding Period: 
Fri, 08/15/2008 to Sat, 07/31/2010

Pages

Subscribe to Mixed Methods