Experimental

Enhancing Engineering Education with Computational Thinking

This project investigates the educational value of computer technologies for learning engineering. The project engages high school students to design, build, and evaluate an energy-efficient model house with the aid of computer simulation and design tools. 

Project Email: 
Lead Organization(s): 
Partner Organization(s): 
Award Number: 
0918449
Funding Period: 
Thu, 10/01/2009 to Sun, 09/30/2012
Project Evaluator: 
Sun Associates
Full Description: 

This project investigates the educational value of computer technologies for learning engineering. The project engages high school students to design, build, and evaluate an energy-efficient model house with the aid of computer simulation and design tools. The project will test the assertion that simulations and hands-on projects are mutually beneficial. The project has developed a computational fluid dynamics simulation tool called Energy2D that teaches heat transfer concepts, as well as a computer-aided design and fabrication tool called Energy3D that supports the full cycle of engineering practices. A comprehensive curriculum book "Engineering Energy Efficiency" has been developed to challenge students to use the tools to improve the energy performances of their model houses step by step, allowing students to learn and apply science to solving engineering problems.

Two rounds of pilot tests have been conducted to test our materials and research instruments. A large-scale research study involving about 250 students is currently underway to investigate the effects of Energy2D and Energy3D in fostering learning. Our study focuses primarily on two areas: a) Do the computer tools increase learning of science concepts and engineering design? b) How well can students apply science to engineering? The data we are collecting includes a wide range of sources such as pre/post tests, embedded assessments, student artifacts, reports, presentations, and teacher opinions. We are in the process of synthesizing and analyzing these data to provide a high-definition lens for viewing into student learning processes.

Evolution Readiness: A Modeling Approach

This project uses computer-based models of interacting organisms and their environments to support a learning progression leading to an appreciation of the theory of evolution and evidence that supports it. The project has created a research-based curriculum centered on progressively complex models that exhibit emergent behavior. The project will help improve the teaching of complex scientific topics and provide a reliable means of directly assessing students' conceptual understanding and inquiry skills.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
0822213
Funding Period: 
Mon, 09/01/2008 to Wed, 08/31/2011
Project Evaluator: 
Philip Benincasa

High Adventure Science

The High Adventure Science project is bringing some of the big unanswered questions in Earth and space science to middle and high school science classrooms. Students will explore the mechanisms of climate change, consider the possibility of life on other planets, and devise solutions to the impending shortage of fresh water. Each curriculum module features interviews with scientists currently working on the same unanswered question.
Project Email: 
Lead Organization(s): 
Partner Organization(s): 
Award Number: 
0929774
Funding Period: 
Tue, 09/15/2009 to Tue, 08/31/2010

Developing, Researching, and Scaling Up SmartGraphs

SmartGraphs activities run in a web browser; there is no software to download or install. SmartGraphs allows students to interact with on-screen graphs to learn about linear equations, the motion of objects, population dynamics, global warming, or other STEM topics that use scatter plots or line graphs. Teachers and students may also use and share existing activities, which are released under a Creative Commons license (see http://www.concord.org/projects/smartgraphs#curriculum).

Project Email: 
Lead Organization(s): 
Partner Organization(s): 
Award Number: 
0918522
Funding Period: 
Sat, 08/15/2009 to Tue, 07/31/2012
Project Evaluator: 
Sigmund Abeles
Full Description: 

SmartGraphs is a project that studies the educational value of digital objects embedded in graphs that “know” about themselves and that provide scaffolding to students to help them learn about graphs and the concepts conveyed in graphs. As planned, digital Smart Graphs can be authored or customized by teachers and accept inputs from students’ responses, sketches, functions, models, and probes. The software analyzes the graphs for the kinds of features that experts recognize and then engages students in conversations that instruct and assess student knowledge.

The project is guided by collaboration between the Concord Consortium and the Pennsylvania State Department of Education Classrooms for the Future program, through which 140,000 laptop computers are deployed to serve 500,000 students. The development of Smart Graphs is based on extensive prior research about students’ use and understanding of graphs (TEEMSS II and Science Universal Design for Learning projects) at the Concord Consortium.

Ecology Disrupted: Using Real Scientific Data about Daily Life to Link Environmental Issues to Ecological Processes in Secondary School Science Classrooms (Collaborative Research: Gano)

This project is refining and testing two case study units on contemporary issues in ecology for urban middle and high school students underserved in their connection to nature. The case studies are based on two Science Bulletins, digital media stories about current science produced by the American Museum of Natural History (AMNH), which use current scientific data to link ecological principles to real-world environmental issues, and to link issues to human daily life.

Award Number: 
0918583
Funding Period: 
Tue, 09/01/2009 to Sat, 08/31/2013

Ecology Disrupted: Using Real Scientific Data About Daily Life to Link Environmental Issues to Ecological Processes in Secondary School Science Classrooms (Collaborative Research: Wyner)

We developed and tested two ecology case study units for urban high school students underserved in their connection to nature. The case studies, based on digital media stories about current science produced by the American Museum of Natural History, use current scientific data to link ecological principles to daily life and environmental issues. Preliminary testing results show that treatment students made significantly higher gains than the control students on the project's major learning goals.

Award Number: 
0918629
Funding Period: 
Tue, 09/01/2009 to Tue, 08/31/2010
Full Description: 

We have refined and tested wo case study units on contemporary issues in ecology for urban middle and high school students underserved in their connection to nature. The case studies are based on two Science Bulletins, digital media stories about current science produced by the American Museum of Natural History (AMNH), which use current scientific data to link ecological principles to real-world environmental issues, and to link issues to human daily life. One unit asks the question, ‘How might snowy and icy roads affect Baltimore’s water supply?’ The other asks the question, ’How might being able to drive between Los Angeles and Las Vegas in just four hours put local bighorn sheep at risk?’ The units provide source material and real data for students to investigate these questions, video profiles of scientists that engage students in the science and the research, and the Museum Science Bulletins media for students to analyze and connect the questions to broader ecological principles and issues. We are using these modules to research the question, “Can curricular units that link environmental issues to ecological principles through analysis of real data from published research on the environmental impacts of familiar everyday activities improve student learning of ecological principles, personal and human environmental impacts and the nature of scientific activity?” 

 

Randomized control trials in the classrooms of 40 ninth grade NYC public school teachers are being used to evaluate the efficacy of the modules.  Assessment items from New York State Regents exams were reviewed and new assessment items were developed, field tested, and analyzed for validity and reliability. Students in the experimental and control classrooms were pre- and post-tested using the assessments.  In addition, teachers completed pre-post surveys, and stratified samples of teachers were observed and interviewed. To evaluate the effects of the intervention on student achievement and on instructional practices, descriptive and inferential statistics, including analysis of variance (ANOVA) models are being employed to addressing the core research question about student achievement. ANOVA models are also being used to measure main effects and interactions between the intervention and other variables as they relate to student achievement. Preliminary analysis indicates that treatments students showed signficantly higher gains than control students on learning of three major project learning goals: 1. Understanding of ecological principles in the context of human impact 2. Understanding daily life in the context of human impact 3. Understanding the nature of scientific evidence.

 

Finally, we will apply our evaluation findings from testing the modules to develop a summative module on oyster fishing in the Chesapeake Bay. Also, in order to disseminate the materials online to a national audience, we will develop an online “kit of parts” of module components to enable teachers to create customized modules that target their students' specific instructional needs.

An Examination of the Impact of Teachers' Domain as a Professional Development Tool on Teacher Knowledge and Student Achievement in Biology

Using an experimental design, this project examines the effects of online professional development courses on high school biology teachers' content and pedagogical knowledge, and on their students' knowledge. The project is testing the impact of using digital resouces and is using hierarchal linear modeling techniques to analyze data. It will contribute to the knowledge base of what impacts student achievement by testing the efficacy of online professional development for science teachers.

Award Number: 
0732186
Funding Period: 
Sat, 09/01/2007 to Fri, 08/31/2012
Project Evaluator: 
N/A
Full Description: 

The goal of this project is to investigate what teachers learn from an online professional development course, and whether teacher learning impacts student learning. High school biology teachers were randomly assigned to take an online course designed to enhance the teaching of genetics and evolution. in the course, participants explore the “big ideas” of the hard-to-teach topics of genetics and evolution through an exploration of online media resources and reflection on a range of teaching strategies. The course was created by WGBH Teachers’ Domain, an online library of free media resources from public television with funding from NSF and is administered by PBS TeacherLine.

Fostering Mathematics Success in English Language Learners

This project is an efficacy study of the Fostering Geometrical Thinking Toolkit (FGTT) previously developed with NSF support. FGTT is a 40-hour professional development intervention focusing on properties of geometric figures, geometric transformations, and measurement of length, area, and volume. The study addresses four research questions, three examining participating teachers and one examining the impact of teachers' professional development on ELL students.

Award Number: 
0821950
Funding Period: 
Fri, 08/15/2008 to Sun, 07/31/2011
Full Description: 

Education Development Center, Inc. (EDC), and Horizon Research, Inc., are conducting the DR-K12 research project, Fostering Mathematics Success of English Language Learners (ELLs): An Efficacy Study of Teacher Professional Development (FMSELL), a study of the effects of the Fostering Geometric Thinking

Toolkit professional development materials (FGTT) for teachers of ELLs. It will address four research questions:

1.     Does participation in FGTT increase teachers’ geometric content knowledge?

2.     How does teachers’ participation affect attention to students’ thinking and mathematical communication?

3.     How does participation affect instructional practices?

4.     What impact on ELLs’ problem-solving strategies is evident when teachers participate in FGTT?

FGTT is a 40-hour professional development intervention focusing on properties of geometric figures, geometric transformations, and measurement of length, area, and volume. The project tests the hypothesis that geometric problem solving invites diagramming, drawing, use of colloquial language, and gesturing to complement mathematical communication and affords teachers opportunities to support ELL learning. The research design uses a randomized block design with 25 pairs of professional development facilitators matched according to their districts’ demographic information.

Investigating the Effect of Professional Development, Mathematical Knowledge for Teaching, and Instruction on Student Outcomes

To meet College and Career-Ready standards in mathematics, classroom instruction must change dramatically.  As in past reform efforts, many look to professional development as a major force to propel this transformation, yet not enough is known about mathematics professional development programs that operate at scale in the United States. In this project, we evaluated one such program.

Lead Organization(s): 
Award Number: 
0918383
Funding Period: 
Tue, 09/01/2009 to Fri, 08/31/2012
Full Description: 

To meet College and Career-Ready standards in mathematics, classroom instruction must change dramatically.  As in past reform efforts, many look to professional development as a major force to propel this transformation, yet not enough is known about mathematics professional development programs that operate at scale in the United States. In this project, we evaluated one such program by randomly assigning 105 teachers to either an “as is” control group or to receive professional development designed to a) improve mathematical knowledge for teaching and b) help teachers revise their instruction to be more cognitively demanding and student-centered. We found positive impacts on teachers’ mathematical knowledge for teaching, but no effects on teaching or student outcomes, suggesting that a modest increment in mathematical knowledge may not by itself be sufficient to improve instruction or student outcomes.

Helping Teachers to Use and Students To Learn From Contrasting Examples: A Scale-up Study in Algebra I

Several small-scale experimental classroom studies Star and Rittle-Johnson demonstrate the value of comparison in mathematics learning: Students who learned by comparing and contrasting alternative solution methods made greater gains in conceptual knowledge, procedural knowledge, and flexibility than those who studied the same solution methods one at a time. This study will extend that prior work by developing, piloting, and then evaluating the impact of comparison on students' learning of mathematics in a full-year algebra course.

Lead Organization(s): 
Award Number: 
0814571
Funding Period: 
Mon, 09/15/2008 to Tue, 08/31/2010

Pages

Subscribe to Experimental