Accessibility

Supporting Teacher Understanding of Emergent Computational Thinking in Early Elementary Students

This project explores how to help teachers identify and support early elementary children’s emergent computational thinking. The project will engage researchers, professional development providers, and early elementary teachers (K-2) in a collaborative research and development process to design a scalable professional development experience for grade K-2 teachers.

Lead Organization(s): 
Award Number: 
2101547
Funding Period: 
Wed, 09/01/2021 to Sat, 08/31/2024
Full Description: 

There is an increasing focus and interest in teaching computer science and computational thinking in early elementary school. The project will engage researchers, professional development providers, and early elementary teachers (K-2) in a collaborative research and development process to design a scalable professional development experience for grade K-2 teachers. The project will field test and conduct research on the artifacts, facilitation strategies, and modes of interaction that effectively prepare K-2 teachers to learn about their students’ emergent use of computational thinking strategies. The teachers will collaborate using an online platform for sharing resources, and the project will also study how the online platform can help to reach and support more teachers. The teachers’ learning will be supported by instructional coaches who will help the teachers to integrate computer science into their teaching, and to interpret evidence of their students’ understanding of computational thinking.

The project explores how to help teachers identify and support early elementary children’s emergent computational thinking. The professional learning model for teachers includes a community of practice supported by an online platform and a coach with expertise in computational thinking. The work leverages models for professional development in early grades mathematics. The project focuses on creating systems and conditions for scalable professional learning including coherence, coaching, teacher networks, and engagement with school and district leadership. The research questions are: (1) What kind of professional development and guidance do teachers need to identify and support emergent computational thinking development in young students’ language and work process? (2) What kind of professional development and guidance do teachers need to identify emergent computational thinking development in young students’ work products? (3) How can a scalable professional learning system help teachers understand the development of emergent computational thinking in K-2 students? The teachers will develop lessons, use them with students, and reflect about their work with the coach and the other teachers in their community of practice. The data collection and analysis include interviews, surveys, observations, and documentation from the online platform to understand teachers’ professional learning and development.

Co-Designing for Statewide Alignment of a Vision for High-Quality Mathematics Instruction (Collaborative Research: Wilson)

This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

Award Number: 
2100903
Funding Period: 
Thu, 07/15/2021 to Mon, 06/30/2025
Full Description: 

Mathematics teaching and learning is influenced by policy and practice at the state, district, and school levels. To support large-scale change, it is important for high-quality mathematics instruction to be aligned and cohesive across each level of the education system. This can be supported through regional partnerships among state, district, and school-based leaders, mathematics teachers, education researchers, and mathematicians. Such partnerships create instructional tools and resources to document the vision for instruction. For example, teams can work together to create instructional frameworks for each grade band that describe standards, mathematics teaching, and units for teaching. This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

This project will develop a shared vision of high-quality mathematics instruction intended to improve systemic coherence during the implementation of education innovations. The project uses a research-practice partnership with a design-based implementation research design. To examine and support implementation of the vision, partners will continue a process of developing instructional frameworks, research and practice briefs, as well as additional resources as needed by stakeholders in the system. Engaging partners at all levels of the system is a central component of developing the shared vision of instruction. This project includes three major research questions. First, what are visions of high-quality mathematics instruction held by educators at different levels of a state educational system? Second, in what ways do educators' visions of high-quality mathematics instruction mediate their use of implementation resources in practice? Finally, in what ways do educators’ visions of high-quality mathematics instruction mediate their participation in the co-design of implementation resources? An activity theory framework is used to understand the interactions between partners at different levels in the system and the creation of artifacts during the design process. The research methods for the study are situated in design-based research to capture the conjectures, instructional resources, design processes, and outcomes of the process. The project will use case studies of partner districts, data gathering from interactions with partners, artifacts of the design process, and other documentation to understand how the vision is created and enacted in different settings and to develop an empirically supported design framework and methodology for implementing STEM innovations at scale that centralizes a shared instructional vision.

Co-Designing for Statewide Alignment of a Vision for High-Quality Mathematics Instruction (Collaborative Research: Mawhinney)

This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

Lead Organization(s): 
Award Number: 
2100833
Funding Period: 
Thu, 07/15/2021 to Mon, 06/30/2025
Full Description: 

Mathematics teaching and learning is influenced by policy and practice at the state, district, and school levels. To support large-scale change, it is important for high-quality mathematics instruction to be aligned and cohesive across each level of the education system. This can be supported through regional partnerships among state, district, and school-based leaders, mathematics teachers, education researchers, and mathematicians. Such partnerships create instructional tools and resources to document the vision for instruction. For example, teams can work together to create instructional frameworks for each grade band that describe standards, mathematics teaching, and units for teaching. This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

This project will develop a shared vision of high-quality mathematics instruction intended to improve systemic coherence during the implementation of education innovations. The project uses a research-practice partnership with a design-based implementation research design. To examine and support implementation of the vision, partners will continue a process of developing instructional frameworks, research and practice briefs, as well as additional resources as needed by stakeholders in the system. Engaging partners at all levels of the system is a central component of developing the shared vision of instruction. This project includes three major research questions. First, what are visions of high-quality mathematics instruction held by educators at different levels of a state educational system? Second, in what ways do educators' visions of high-quality mathematics instruction mediate their use of implementation resources in practice? Finally, in what ways do educators’ visions of high-quality mathematics instruction mediate their participation in the co-design of implementation resources? An activity theory framework is used to understand the interactions between partners at different levels in the system and the creation of artifacts during the design process. The research methods for the study are situated in design-based research to capture the conjectures, instructional resources, design processes, and outcomes of the process. The project will use case studies of partner districts, data gathering from interactions with partners, artifacts of the design process, and other documentation to understand how the vision is created and enacted in different settings and to develop an empirically supported design framework and methodology for implementing STEM innovations at scale that centralizes a shared instructional vision.

Co-Designing for Statewide Alignment of a Vision for High-Quality Mathematics Instruction (Collaborative Research: Schwartz)

This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

Lead Organization(s): 
Award Number: 
2100895
Funding Period: 
Thu, 07/15/2021 to Mon, 06/30/2025
Full Description: 

Mathematics teaching and learning is influenced by policy and practice at the state, district, and school levels. To support large-scale change, it is important for high-quality mathematics instruction to be aligned and cohesive across each level of the education system. This can be supported through regional partnerships among state, district, and school-based leaders, mathematics teachers, education researchers, and mathematicians. Such partnerships create instructional tools and resources to document the vision for instruction. For example, teams can work together to create instructional frameworks for each grade band that describe standards, mathematics teaching, and units for teaching. This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

This project will develop a shared vision of high-quality mathematics instruction intended to improve systemic coherence during the implementation of education innovations. The project uses a research-practice partnership with a design-based implementation research design. To examine and support implementation of the vision, partners will continue a process of developing instructional frameworks, research and practice briefs, as well as additional resources as needed by stakeholders in the system. Engaging partners at all levels of the system is a central component of developing the shared vision of instruction. This project includes three major research questions. First, what are visions of high-quality mathematics instruction held by educators at different levels of a state educational system? Second, in what ways do educators' visions of high-quality mathematics instruction mediate their use of implementation resources in practice? Finally, in what ways do educators’ visions of high-quality mathematics instruction mediate their participation in the co-design of implementation resources? An activity theory framework is used to understand the interactions between partners at different levels in the system and the creation of artifacts during the design process. The research methods for the study are situated in design-based research to capture the conjectures, instructional resources, design processes, and outcomes of the process. The project will use case studies of partner districts, data gathering from interactions with partners, artifacts of the design process, and other documentation to understand how the vision is created and enacted in different settings and to develop an empirically supported design framework and methodology for implementing STEM innovations at scale that centralizes a shared instructional vision.

Co-Designing for Statewide Alignment of a Vision for High-Quality Mathematics Instruction (Collaborative Research: McCulloch)

This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

Award Number: 
2100947
Funding Period: 
Thu, 07/15/2021 to Mon, 06/30/2025
Full Description: 

Mathematics teaching and learning is influenced by policy and practice at the state, district, and school levels. To support large-scale change, it is important for high-quality mathematics instruction to be aligned and cohesive across each level of the education system. This can be supported through regional partnerships among state, district, and school-based leaders, mathematics teachers, education researchers, and mathematicians. Such partnerships create instructional tools and resources to document the vision for instruction. For example, teams can work together to create instructional frameworks for each grade band that describe standards, mathematics teaching, and units for teaching. This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

This project will develop a shared vision of high-quality mathematics instruction intended to improve systemic coherence during the implementation of education innovations. The project uses a research-practice partnership with a design-based implementation research design. To examine and support implementation of the vision, partners will continue a process of developing instructional frameworks, research and practice briefs, as well as additional resources as needed by stakeholders in the system. Engaging partners at all levels of the system is a central component of developing the shared vision of instruction. This project includes three major research questions. First, what are visions of high-quality mathematics instruction held by educators at different levels of a state educational system? Second, in what ways do educators' visions of high-quality mathematics instruction mediate their use of implementation resources in practice? Finally, in what ways do educators’ visions of high-quality mathematics instruction mediate their participation in the co-design of implementation resources? An activity theory framework is used to understand the interactions between partners at different levels in the system and the creation of artifacts during the design process. The research methods for the study are situated in design-based research to capture the conjectures, instructional resources, design processes, and outcomes of the process. The project will use case studies of partner districts, data gathering from interactions with partners, artifacts of the design process, and other documentation to understand how the vision is created and enacted in different settings and to develop an empirically supported design framework and methodology for implementing STEM innovations at scale that centralizes a shared instructional vision.

Measuring the Effectiveness of Middle School STEM Innovation and Engineering Design Curricula

Researchers from Georgia Tech have developed a three-year middle school Engineering and Technology course sequence that introduces students to advanced manufacturing tools such as computer aided design (CAD) and 3D printing, incorporates engineering concepts such as pneumatics, robotics and aeronautics, increases student awareness of career paths, and addresses the concerns of technical employers wanting workers with problem solving, teamwork, and communication skills.

Award Number: 
2101441
Funding Period: 
Wed, 09/01/2021 to Sun, 08/31/2025
Full Description: 

Inclusion of engineering in the Next Generation Science Standards has led to increased opportunities for K-12 students to learn engineering related concepts and skills, and learn about engineering career paths. However, a persistent challenge is the lack of high-quality, research-based engineering curricular resources that align with science and math education standards. Further, the opportunities for K-12 students to also learn about manufacturing and how manufacturing is related to engineering, math, and science are limited. Researchers from Georgia Tech have developed a three-year middle school Engineering and Technology course sequence that introduces students to advanced manufacturing tools such as computer aided design (CAD) and 3D printing, incorporates engineering concepts such as pneumatics, robotics and aeronautics, increases student awareness of career paths, and addresses the concerns of technical employers wanting workers with problem solving, teamwork, and communication skills. This DRK-12 impact study project will investigate the effectiveness of STEM-Innovation and Design (STEM-ID) curricula in approximately 29 middle schools, targeting 29 engineering teachers and approximately 5,000 students across middle grades in Georgia. This impact research study will determine whether STEM-ID courses are equally effective across different demographic groups and school environments under normal implementation conditions and whether the courses have the potential to positively impact a vast number of students around the country, particularly students who have struggled to stay engaged with their STEM education. It is a critical part of a larger effort to move the STEM-ID curricula, developed with NSF support, from the research lab to large-scale practice in schools.

To facilitate large-scale implementation, the project will transfer all curriculum and teacher support materials to an online dissemination site, develop just-in-time teacher support materials to embed within the curriculum, create an online professional development platform, and conduct professional learning in multiple areas of the state. The project team will then assess the transferability of the STEM-ID curricula and identify teacher outcomes that affect the implementation. They will also examine the generalizability of the curriculum by measuring student outcomes in STEM academic achievement and on social-emotional scales. The project’s research questions consider 1) contextual factors that influence scaling; 2) the fidelity of implementation, curriculum adaptations and sustainability; 3) the effects of professional development on teachers’ engineering self-efficacy and instructional practices; 4) the effect of participation on student academic performance in mathematics and science; 5) the effect of participation on student social-emotional outcomes; and 5) the relationship between the way STEM-ID is implemented and the student outcomes.  To examine the effects of STEM-ID on achievement and achievement growth, the investigators will use a multilevel growth model and mediation analysis to explore if the intervention’s effect on achievement was mediated by students’ engagement, academic self-efficacy, and/or interest in STEM. Additionally, drawing upon Century and Cassata’s Fidelity of Implementation framework (FOI), they will examine the array of factors that influence implementation of the STEM-ID curricula across diverse school settings.

Understanding STEM Teaching through Integrated Contexts in Everyday Life (Collaborative Research: Marco-Bujosa)

Increased focus on school accountability and teacher performance measures have resulted in STEM instruction that emphasizes content and procedural knowledge over critical thinking and real-world applications. Yet, critical thinking and application are essential in developing functional scientific literacy skills among students. This need is perhaps most pressing in economically depressed urban settings. One strategy to promote STEM engagement and learning is to make clear and meaningful connections between STEM concepts, principles, and STEM-related issues relevant to the learner.

Lead Organization(s): 
Award Number: 
2101144
Funding Period: 
Thu, 07/01/2021 to Mon, 06/30/2025
Full Description: 

Increased focus on school accountability and teacher performance measures have resulted in science, technology, engineering, and mathematics (STEM) instruction that emphasizes content and procedural knowledge over critical thinking and real-world applications. Yet, critical thinking and application are essential in developing functional scientific literacy skills among students. This need is perhaps most pressing in economically depressed urban settings. One strategy to promote STEM engagement and learning is to make clear and meaningful connections between STEM concepts, principles, and STEM-related issues relevant to the learner. Socioscientific issues (SSI) can provide a powerful avenue for promoting the desired kinds of engagement. SSI are debatable and ill-defined problems that have a basis in science but necessarily include moral and ethical choices. SSI for economically disadvantaged, culturally diverse students in urban settings might include, for example, lead paint contamination, poor water or air quality, or the existence of “food deserts.” By integrating locally relevant SSI with the goals of social justice, the Social Justice STEM Pedagogies (SJSP) framework the project uses is intended to support students to use their scientific expertise to be agents of change. SJSP can be potentially transformative for teachers, students, schools, and the communities in which students live. For SJSP to effectively promote STEM learning, however, teachers must learn how to integrate STEM-concepts and practices into the various real-world SSI present in their students’ environment. This collaborative project is designed to implement and evaluate a comprehensive professional development plan for grades 7 –12 STEM teachers from economically disadvantaged school districts in Philadelphia and surrounding areas. Teachers will develop ways to incorporate SSI into their instruction that are grounded in standards to foster students’ STEM engagement. The instructional practices enacted by teachers will enhance students’ STEM literacy while utilizing their own knowledge and culture in solving complex and ethically challenging STEM issues, thus promoting students’ abilities to be change agents.

This collaborative research project involves Arcadia University, Mercyhurst University, LaSalle University, Villanova University, and St. Joseph’s University. It is designed to investigate the effectiveness of a professional development (PD) program for STEM teachers to develop their pedagogical content knowledge (PCK) in teaching SSI and SJSP. Over four years, three cohorts of 25 grades 7-12 teachers will participate in about 200 hours of PD. The SSI and SJSP encompass authentic, complex real-world, STEM-based issues that are directly related to the inequities experienced by students and their communities that students can engage with in the classroom through the use of inquiry-based learning strategies. By promoting students’ engagement in and awareness of the relevance of STEM in everyday life, teacher participants in this PD will foster STEM learning, especially among students who have been historically marginalized from STEM disciplines, and who are from economically disadvantaged backgrounds. The research plan is designed to reveal elements of the PD program that are most effective in supporting teachers’ increased capacity to design and implement units of study that incorporate scientific, social, and discursive elements of SSI. Using predominantly qualitative methods, other outcomes include how teachers’ PCK change towards teaching with SSI/SJSP; what factors support and inhibit teacher’s abilities to promote SSI/SJSP; and how justice-centered STEM lessons help students to develop moral and ethical reasoning, scientific skepticism, STEM inquiry/modeling, and SSI discourse/argumentation.

Understanding STEM Teaching through Integrated Contexts in Everyday Life (Collaborative Research: Johnson)

Increased focus on school accountability and teacher performance measures have resulted in STEM instruction that emphasizes content and procedural knowledge over critical thinking and real-world applications. Yet, critical thinking and application are essential in developing functional scientific literacy skills among students. This need is perhaps most pressing in economically depressed urban settings. One strategy to promote STEM engagement and learning is to make clear and meaningful connections between STEM concepts, principles, and STEM-related issues relevant to the learner.

Lead Organization(s): 
Award Number: 
2101287
Funding Period: 
Thu, 07/01/2021 to Mon, 06/30/2025
Full Description: 

Increased focus on school accountability and teacher performance measures have resulted in science, technology, engineering, and mathematics (STEM) instruction that emphasizes content and procedural knowledge over critical thinking and real-world applications. Yet, critical thinking and application are essential in developing functional scientific literacy skills among students. This need is perhaps most pressing in economically depressed urban settings. One strategy to promote STEM engagement and learning is to make clear and meaningful connections between STEM concepts, principles, and STEM-related issues relevant to the learner. Socioscientific issues (SSI) can provide a powerful avenue for promoting the desired kinds of engagement. SSI are debatable and ill-defined problems that have a basis in science but necessarily include moral and ethical choices. SSI for economically disadvantaged, culturally diverse students in urban settings might include, for example, lead paint contamination, poor water or air quality, or the existence of “food deserts.” By integrating locally relevant SSI with the goals of social justice, the Social Justice STEM Pedagogies (SJSP) framework the project uses is intended to support students to use their scientific expertise to be agents of change. SJSP can be potentially transformative for teachers, students, schools, and the communities in which students live. For SJSP to effectively promote STEM learning, however, teachers must learn how to integrate STEM-concepts and practices into the various real-world SSI present in their students’ environment. This collaborative project is designed to implement and evaluate a comprehensive professional development plan for grades 7 –12 STEM teachers from economically disadvantaged school districts in Philadelphia and surrounding areas. Teachers will develop ways to incorporate SSI into their instruction that are grounded in standards to foster students’ STEM engagement. The instructional practices enacted by teachers will enhance students’ STEM literacy while utilizing their own knowledge and culture in solving complex and ethically challenging STEM issues, thus promoting students’ abilities to be change agents.

This collaborative research project involves Arcadia University, Mercyhurst University, LaSalle University, Villanova University, and St. Joseph’s University. It is designed to investigate the effectiveness of a professional development (PD) program for STEM teachers to develop their pedagogical content knowledge (PCK) in teaching SSI and SJSP. Over four years, three cohorts of 25 grades 7-12 teachers will participate in about 200 hours of PD. The SSI and SJSP encompass authentic, complex real-world, STEM-based issues that are directly related to the inequities experienced by students and their communities that students can engage with in the classroom through the use of inquiry-based learning strategies. By promoting students’ engagement in and awareness of the relevance of STEM in everyday life, teacher participants in this PD will foster STEM learning, especially among students who have been historically marginalized from STEM disciplines, and who are from economically disadvantaged backgrounds. The research plan is designed to reveal elements of the PD program that are most effective in supporting teachers’ increased capacity to design and implement units of study that incorporate scientific, social, and discursive elements of SSI. Using predominantly qualitative methods, other outcomes include how teachers’ PCK change towards teaching with SSI/SJSP; what factors support and inhibit teacher’s abilities to promote SSI/SJSP; and how justice-centered STEM lessons help students to develop moral and ethical reasoning, scientific skepticism, STEM inquiry/modeling, and SSI discourse/argumentation.

Understanding STEM Teaching through Integrated Contexts in Everyday Life (Collaborative Research: Richardson)

Increased focus on school accountability and teacher performance measures have resulted in STEM instruction that emphasizes content and procedural knowledge over critical thinking and real-world applications. Yet, critical thinking and application are essential in developing functional scientific literacy skills among students. This need is perhaps most pressing in economically depressed urban settings. One strategy to promote STEM engagement and learning is to make clear and meaningful connections between STEM concepts, principles, and STEM-related issues relevant to the learner.

Lead Organization(s): 
Award Number: 
2101324
Funding Period: 
Thu, 07/01/2021 to Mon, 06/30/2025
Full Description: 

Increased focus on school accountability and teacher performance measures have resulted in science, technology, engineering, and mathematics (STEM) instruction that emphasizes content and procedural knowledge over critical thinking and real-world applications. Yet, critical thinking and application are essential in developing functional scientific literacy skills among students. This need is perhaps most pressing in economically depressed urban settings. One strategy to promote STEM engagement and learning is to make clear and meaningful connections between STEM concepts, principles, and STEM-related issues relevant to the learner. Socioscientific issues (SSI) can provide a powerful avenue for promoting the desired kinds of engagement. SSI are debatable and ill-defined problems that have a basis in science but necessarily include moral and ethical choices. SSI for economically disadvantaged, culturally diverse students in urban settings might include, for example, lead paint contamination, poor water or air quality, or the existence of “food deserts.” By integrating locally relevant SSI with the goals of social justice, the Social Justice STEM Pedagogies (SJSP) framework the project uses is intended to support students to use their scientific expertise to be agents of change. SJSP can be potentially transformative for teachers, students, schools, and the communities in which students live. For SJSP to effectively promote STEM learning, however, teachers must learn how to integrate STEM-concepts and practices into the various real-world SSI present in their students’ environment. This collaborative project is designed to implement and evaluate a comprehensive professional development plan for grades 7 –12 STEM teachers from economically disadvantaged school districts in Philadelphia and surrounding areas. Teachers will develop ways to incorporate SSI into their instruction that are grounded in standards to foster students’ STEM engagement. The instructional practices enacted by teachers will enhance students’ STEM literacy while utilizing their own knowledge and culture in solving complex and ethically challenging STEM issues, thus promoting students’ abilities to be change agents.

This collaborative research project involves Arcadia University, Mercyhurst University, LaSalle University, Villanova University, and St. Joseph’s University. It is designed to investigate the effectiveness of a professional development (PD) program for STEM teachers to develop their pedagogical content knowledge (PCK) in teaching SSI and SJSP. Over four years, three cohorts of 25 grades 7-12 teachers will participate in about 200 hours of PD. The SSI and SJSP encompass authentic, complex real-world, STEM-based issues that are directly related to the inequities experienced by students and their communities that students can engage with in the classroom through the use of inquiry-based learning strategies. By promoting students’ engagement in and awareness of the relevance of STEM in everyday life, teacher participants in this PD will foster STEM learning, especially among students who have been historically marginalized from STEM disciplines, and who are from economically disadvantaged backgrounds. The research plan is designed to reveal elements of the PD program that are most effective in supporting teachers’ increased capacity to design and implement units of study that incorporate scientific, social, and discursive elements of SSI. Using predominantly qualitative methods, other outcomes include how teachers’ PCK change towards teaching with SSI/SJSP; what factors support and inhibit teacher’s abilities to promote SSI/SJSP; and how justice-centered STEM lessons help students to develop moral and ethical reasoning, scientific skepticism, STEM inquiry/modeling, and SSI discourse/argumentation.

Understanding STEM Teaching through Integrated Contexts in Everyday Life (Collaborative Research: Macalalag)

Increased focus on school accountability and teacher performance measures have resulted in STEM instruction that emphasizes content and procedural knowledge over critical thinking and real-world applications. Yet, critical thinking and application are essential in developing functional scientific literacy skills among students. This need is perhaps most pressing in economically depressed urban settings. One strategy to promote STEM engagement and learning is to make clear and meaningful connections between STEM concepts, principles, and STEM-related issues relevant to the learner.

Lead Organization(s): 
Award Number: 
2101395
Funding Period: 
Thu, 07/01/2021 to Mon, 06/30/2025
Full Description: 

Increased focus on school accountability and teacher performance measures have resulted in science, technology, engineering, and mathematics (STEM) instruction that emphasizes content and procedural knowledge over critical thinking and real-world applications. Yet, critical thinking and application are essential in developing functional scientific literacy skills among students. This need is perhaps most pressing in economically depressed urban settings. One strategy to promote STEM engagement and learning is to make clear and meaningful connections between STEM concepts, principles, and STEM-related issues relevant to the learner. Socioscientific issues (SSI) can provide a powerful avenue for promoting the desired kinds of engagement. SSI are debatable and ill-defined problems that have a basis in science but necessarily include moral and ethical choices. SSI for economically disadvantaged, culturally diverse students in urban settings might include, for example, lead paint contamination, poor water or air quality, or the existence of “food deserts.” By integrating locally relevant SSI with the goals of social justice, the Social Justice STEM Pedagogies (SJSP) framework the project uses is intended to support students to use their scientific expertise to be agents of change. SJSP can be potentially transformative for teachers, students, schools, and the communities in which students live. For SJSP to effectively promote STEM learning, however, teachers must learn how to integrate STEM-concepts and practices into the various real-world SSI present in their students’ environment. This collaborative project is designed to implement and evaluate a comprehensive professional development plan for grades 7 –12 STEM teachers from economically disadvantaged school districts in Philadelphia and surrounding areas. Teachers will develop ways to incorporate SSI into their instruction that are grounded in standards to foster students’ STEM engagement. The instructional practices enacted by teachers will enhance students’ STEM literacy while utilizing their own knowledge and culture in solving complex and ethically challenging STEM issues, thus promoting students’ abilities to be change agents.

This collaborative research project involves Arcadia University, Mercyhurst University, LaSalle University, Villanova University, and St. Joseph’s University. It is designed to investigate the effectiveness of a professional development (PD) program for STEM teachers to develop their pedagogical content knowledge (PCK) in teaching SSI and SJSP. Over four years, three cohorts of 25 grades 7-12 teachers will participate in about 200 hours of PD. The SSI and SJSP encompass authentic, complex real-world, STEM-based issues that are directly related to the inequities experienced by students and their communities that students can engage with in the classroom through the use of inquiry-based learning strategies. By promoting students’ engagement in and awareness of the relevance of STEM in everyday life, teacher participants in this PD will foster STEM learning, especially among students who have been historically marginalized from STEM disciplines, and who are from economically disadvantaged backgrounds. The research plan is designed to reveal elements of the PD program that are most effective in supporting teachers’ increased capacity to design and implement units of study that incorporate scientific, social, and discursive elements of SSI. Using predominantly qualitative methods, other outcomes include how teachers’ PCK change towards teaching with SSI/SJSP; what factors support and inhibit teacher’s abilities to promote SSI/SJSP; and how justice-centered STEM lessons help students to develop moral and ethical reasoning, scientific skepticism, STEM inquiry/modeling, and SSI discourse/argumentation.

Pages

Subscribe to Accessibility