Instructional Practice

Persistent, Enthusiastic, Relentless: Study of Induction Science Teachers (PERSIST)

This project examines the effect of four different types of induction programs (district-based, e-mentoring, university-based, intern programs) on 100 5th year teachers of secondary science. The teachers involved in the study have participated in a previous study during their first three years of teaching.

Award Number: 
1247096
Funding Period: 
Sat, 08/01/2009 to Wed, 07/31/2013
Full Description: 

This project examines the effect of four different types of induction programs on 100 5th year teachers of secondary science. The teachers involved in the study have participated in a previous study during their first three years of teaching.

The four types of induction programs are described as follows.

1. General induction programs offered by school districts/regional centers,

2. Science-specific e-mentoring programs offered by higher education or science organizations,

3. Science-specific programs offered by higher education institutions, and

4. Intern programs that allow teachers to earn their teaching credential while they complete their first year of teaching.

Dr. Luft's research concentrates on providing the details that give insights into why newly qualified science teachers are leaving or persisting in the profession and how induction programs affect their beliefs and practices. The research questions for this study are:

1. Do induction programs make a difference in the retention of secondary science teachers during their fourth and fifth year?

2. What characterizations can be made about teachers who persist, their performance, and the assistance they receive?

3. How do beginning science teachers develop over their first five years? How do induction programs contribute to this development?

Data collection includes 8 interviews and 2 classroom observations of each teacher. The CETP-COP and Oregon Teacher Observation Protocol are used for classroom observations. Quantitative data analysis utilizes ANOVAs and HLM, to be followed by a qualitative analysis exploring the findings.

The research team is based at Arizona State University and includes Dr. Luft, Dr. Marilyn Thompson, five graduate students and one undergraduate student. The products will include papers submitted to professional journals, postings to the Arizona Science Coordinators Association listserv, and direct dissemination to school administrators and local meetings.

The impacts will be increased understanding of induction programs, what they achieve and what characteristics are effective. This will help policy makers and administrators modify the programs for increased effectiveness. Given the high rate of teachers leaving the profession during the first five years and the popularity of induction programs, the primary impact would be increased retention of quality teachers.

Video Analysis of Science Teaching: Developing a Shared Words-to-images Analytical Tool

This project will develop video-case modules for use in pre-service teacher preparation programs. Modules will target specific grade bands (K-3, 4-5, 6-8) and address standards-based content domains, to help future teachers deepen their content knowledge, pedagogic skills and ability to analyze student thinking. The cases will illustrate reform classroom practices and more traditional instruction, include interviews with teachers and students, and incorporate a set of analytic tasks that promote users' critical observations of the cases.

Project Email: 
Lead Organization(s): 
Award Number: 
0957996
Funding Period: 
Sat, 08/01/2009 to Sat, 07/31/2010
Project Evaluator: 
none

Science Teachers Learning from Lesson Analysis (STeLLA) Professional Development Program: Scaling for Effectiveness

This is a full research and development project addressing challenge question: How can promising innovations be successfully implemented, sustained, and scaled in schools and districts? The promising innovation is the Science Teachers Learning from Lesson Analysis (STeLLA) professional development (PD) program, which supports 4th- and 5th-grade teachers in teaching concepts in biology (food webs), physical science (phase changes), and earth science (earth’s changing surface, weather).

Project Email: 
Lead Organization(s): 
Award Number: 
0918277
Funding Period: 
Tue, 09/01/2009 to Sun, 08/31/2014
Project Evaluator: 
McREL
Full Description: 

Supporting Grade 5-8 Students in Writing Scientific Explanations

This project is writing and researching a book supporting grade 5-8 students in scientific explanations and arguments. The book provides written and video examples from a variety of contexts in terms of content and diversity of students. The book and accompanying facilitator materials also provide different teacher instructional strategies for supporting students. The research focuses on how the book and accompanying professional development impact teachers' beliefs, pedagogical content knowledge and classroom practice.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
0836099
Funding Period: 
Fri, 08/15/2008 to Sun, 07/31/2011
Full Description: 

 This SGER grant proposes the development of a book and a research study to investigate the impact of that book and accompanying professional development on teachers’ beliefs and classroom practices to support grade 5-8 students in writing scientific explanations.  The project will expand the current body of research around teachers’ beliefs and professional development for scientific explanation and argumentation as well as provide a valuable resource that includes examples of student writing and video cases from diverse learners that can be used by science educators and teachers across the country.

 

Intellectual Merit

The recent National Research Council publication Taking Science to School: Learning and Teaching Science in Grades k-8 (Duschl, Schweingruber & Shouse, 2006) offers a new vision for proficiency in science, which includes a focus that students be able to “Generate and evaluate scientific evidence and explanation” (p.2).  Although this focus on evidence based scientific explanations is prevalent in the current research literature, there are few concrete examples of what this scientific inquiry practice looks like when it is successfully supported in classrooms. We propose to develop a teacher book and accompanying professional development facilitator materials that will help transform how science is being taught in this country.  The book will provide concrete examples in both student written work and video of the current theoretical ideas being advocated in the science education field. By providing this image, the knowledge in the field will be advanced by transforming a theoretical idea and illustrating what it looks like in actual classroom practice that can be used by teachers as well as in teacher preparation and professional development.  The examples will include a variety of different contexts in terms of different content areas, grades 5-8, and students with a variety of backgrounds including diverse students from urban schools.  Furthermore, we propose to research the impact of the book and accompanying professional development on teachers’ beliefs and classroom practice around scientific explanation.  The majority of recent work in the field of scientific explanation and argumentation has focused on curriculum materials, technology tools, and classroom practice. There is currently little research around teacher education and professional development to support teachers in incorporating scientific explanation and argumentation in their classrooms (Zohar, 2008). Consequently, the results from this study will be essential to inform the field about teachers’ beliefs around scientific explanation, how professional development can change those beliefs, and the subsequent impact on teachers’ classroom practices.

 

Broader Impacts

The use of the book by teachers, professional development leaders and teacher educators will have a significant impact on middle school students’ learning throughout the country.  Through the distribution and use of the book, teachers will have access to resources that will help them incorporate scientific explanations in their own classroom practice.  As our previous research has shown (McNeill & Krajcik, 2007; McNeill & Krajcik, 2008a; McNeill, Lizotte, Krajcik & Marx, 2006), using our framework and instructional strategies for scientific explanation can improve diverse students’ ability to write scientific explanations as well as learn key science concepts.  A large percentage of our research has been conducted with urban students including minority students and students from low income families who have not traditionally succeeded in science. Focusing on science as a discourse with distinct language forms and ways of knowing, such as analyzing data and communicating scientific explanations can help language-minority students learn to think and talk scientifically (Rosebery, et al., 1992).  This book will allow the strategies we have found to be successful with diverse students to reach a much larger audience allowing more middle school students to succeed in science. Providing teachers with strategies and examples of how those strategies have been successfully used in real classrooms will help them implement similar practices in their own classrooms and will help more students successfully write evidence based scientific explanations.  The research study around the impact of the book and accompanying professional development will reach twenty-five teachers and their students in the Boston Public School schools which serve primarily low-income (71% eligible to receive free or reduced lunch) inner city students from minority backgrounds.  The publication of the book with Pearson Allyn & Bacon will have the potential of reaching numerous more teachers and their students across the country.

Ecosystems and Evidence Project (Collaborative Research: Berkowitz)

This exploratory research and development project addresses the question, "Can students develop an understanding of the ecological nature of science (ENOS) in high school biology and environmental science classes that is useful and productive in environmental citizenship?" To address this question, the project will identify the essential elements of ENOS, investigate how these can be taught and learned, and explore how ENOS skills and understandings are used to enhance environmental citizenship.

Award Number: 
0918610
Funding Period: 
Tue, 09/01/2009 to Fri, 08/31/2012
Project Evaluator: 
Jackie DeLisi, Education Development Center, Inc. (EDC)

Video Interactions for Teaching and Learning (VITAL): A Learning Environment for Courses in Early Childhood Mathematics Education

This project enhances and expands video-based instruction to help prospective and practicing teachers analyze the development of children's mathematical thinking. It trains teachers to: (a) understand from a cognitive developmental psychology perspective how children learn and think about mathematics; (b) assess children's mathematical knowledge and plan instructional activities accordingly; (c) develop an evidence-based understanding of effective and developmentally appropriate teaching methods and curricula; and (d) develop a basic understanding of key mathematical concepts.

Lead Organization(s): 
Award Number: 
0353402
Funding Period: 
Tue, 06/01/2004 to Mon, 11/30/2009

Geniverse: A Student Collaboratory for Biology Cyberlearning

This project addresses biology teachers and students at the high school level, responding to the exponential increases occurring in biology knowledge today and the need for students to understand the experimental basis behind biology concepts. The project studies the feasibility of engaging students in an environment where they can learn firsthand how science knowledge develops in the fields of bioinformatics and DNA science by performing collaborative, simulated experiments to solve open-ended problems.

Project Email: 
Lead Organization(s): 
Award Number: 
0918642
Funding Period: 
Tue, 09/15/2009 to Tue, 08/31/2010
Full Description: 

Logging Opportunities in Online Programs for Science (LOOPS): Student and Teacher Learning

The project makes use of technology to create timely, valid, and actionable reports to teachers by analyzing assessments and logs of student actions generated in the course of using computer-based curriculum materials. The reports allow teachers to make data-based decisions about alternative teaching strategies. The technology supports student collaborations and the assignment of different learning activities to groups, an essential function needed for universal design for learning (UDL).

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
0733299
Funding Period: 
Tue, 01/01/2008 to Fri, 12/31/2010
Project Evaluator: 
David Reider, Education Design Inc.

Evolution Readiness: A Modeling Approach

This project uses computer-based models of interacting organisms and their environments to support a learning progression leading to an appreciation of the theory of evolution and evidence that supports it. The project has created a research-based curriculum centered on progressively complex models that exhibit emergent behavior. The project will help improve the teaching of complex scientific topics and provide a reliable means of directly assessing students' conceptual understanding and inquiry skills.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
0822213
Funding Period: 
Mon, 09/01/2008 to Wed, 08/31/2011
Project Evaluator: 
Philip Benincasa

High Adventure Science

The High Adventure Science project is bringing some of the big unanswered questions in Earth and space science to middle and high school science classrooms. Students will explore the mechanisms of climate change, consider the possibility of life on other planets, and devise solutions to the impending shortage of fresh water. Each curriculum module features interviews with scientists currently working on the same unanswered question.
Project Email: 
Lead Organization(s): 
Partner Organization(s): 
Award Number: 
0929774
Funding Period: 
Tue, 09/15/2009 to Tue, 08/31/2010

Pages

Subscribe to Instructional Practice