Instructional Practice

Fostering STEM Trajectories: Bridging ECE Research, Practice, and Policy

This project will convene stakeholders in STEM and early childhood education to discuss better integration of STEM in the early grades. PIs will begin with a phase of background research to surface critical issues in teaching and learning in early childhood education and STEM.  A number of reports will be produced including commissioned papers, vision papers, and a forum synthesis report.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1417878
Funding Period: 
Mon, 06/15/2015 to Tue, 05/31/2016
Full Description: 

Early childhood education is at the forefront of the minds of parents, teachers, policymakers as well as the general public. A strong early childhood foundation is critical for lifelong learning. The National Science Foundation has made a number of early childhood grants in science, technology, engineering and mathematics (STEM) over the years and the knowledge generated from this work has benefitted researchers. Early childhood teachers and administrators, however, have little awareness of this knowledge since there is little research that is translated and disseminated into practice, according to the National Research Council. In addition, policies for both STEM and early childhood education has shifted in the last decade. 

The Joan Ganz Cooney Center and the New America Foundation are working together to highlight early childhood STEM education initiatives. Specifically, the PIs will convene stakeholders in STEM and early childhood education to discuss better integration of STEM in the early grades. PIs will begin with a phase of background research to surface critical issues in teaching and learning in early childhood education and STEM. The papers will be used as anchor topics to organize a forum with a broad range of stakeholders including policymakers as well as early childhood researchers and practitioners. A number of reports will be produced including commissioned papers, vision papers, and a forum synthesis report. The synthesis report will be widely disseminated by the Joan Ganz Cooney Center and the New America Foundation.

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed project.

Design Technology and Engineering Education for English Learner Students: Project DTEEL

One significant challenge facing elementary STEM education is the varied preparation of English-language learners. The project addresses this with an innovative use of engineering curriculum to build on the English-language learners' prior experiences. The project will support teachers' learning about strategies for teaching English-language learners and using engineering design tasks as learning opportunities for mathematics, science and communication skills. 

Lead Organization(s): 
Award Number: 
1503428
Funding Period: 
Mon, 06/01/2015 to Thu, 05/31/2018
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. One significant challenge facing elementary STEM education is the varied preparation of English-language learners. The project addresses this with an innovative use of engineering curriculum to build on the English-language learners' prior experiences. The project will support teachers' learning about strategies for teaching English-language learners and using engineering design tasks as learning opportunities for mathematics, science and communication skills. 

The project's cross-disciplinary approach is grounded in both inquiry-based science education research and bilingual cognition research. These complementary foci bridge research areas to highlight how engineering experiences for students can capitalize on bilingual students' experiences as problem solvers. The project will develop teachers' ability and instructional efficacy for both STEM and bilingual student instruction. The project adapts a previously developed curriculum for engineering education by adding resources and tools to support bilingual students. The research design primarily measures teacher-level phenomenon such as implementation of instructional strategies, STEM self-efficacy and ability to address the academic development of bilingual students through engineering design activities. Data collected include classroom observations, teacher surveys, focus groups, and teacher interviews. Student assessments will be piloted in the final year of the project.

Refining a Model with Tools to Develop Math PD Leaders: An Implementation Study

This project will work with middle school mathematics teachers in San Francisco Unified School District to develop their capacity to conduct professional development for the teachers in their schools. A central goal of this project is to develop models and resources for effective professional development and preparation of professional development leaders in mathematics with special attention to students who are English language learners.

Lead Organization(s): 
Award Number: 
1417261
Funding Period: 
Thu, 01/01/2015 to Tue, 12/31/2019
Full Description: 

There is increased demand for K-12 teacher professional development that yields improvements in student learning and achievement. This need is particularly high given widespread adoption of the Common Core State Standards (CCSS) in mathematics which challenges teachers to incorporate mathematical thinking and problem solving into their instruction. The professional development challenge is exacerbated as our nation's demographics continue to shift, increasing the number of English language learners in school districts throughout the U.S. To meet this demand, the educational community must develop large-scale, system-level professional development programs aligned with the CCSS that are scalable and sustainable. The project team from Stanford University will work with middle school mathematics teachers in San Francisco Unified School District to develop their capacity to conduct professional development for the teachers in their schools. A central goal of this project is to develop models and resources for effective professional development and preparation of professional development leaders in mathematics with special attention to students who are English language learners. These models and resources will: provide school districts with the tools to build local capacity and provide sustainable professional development to all middle school mathematics teachers; improve the quality of teaching and, in turn, make important progress toward ensuring that all students in middle school can achieve the mathematical skills and understandings identified in the new standards; and meet the needs of English language learners. In addition, the Stanford team will contribute to the knowledge base in mathematics education, professional development and English language learners.

In previous work, the team developed two interconnected models--the Problem-Solving Cycle (PSC) and the Mathematics Leadership Preparation (MLP) models for preparing professional development leaders. The PSC model consists of a series of interconnected workshops organized around a problem that can be solved using multiple representations and solutions and can be adapted for multiple grade levels. Each cycle focuses on a different math problem. During the first cycle, teachers collaboratively solve the focal math problem and develop plans for teaching it to their students. Teachers then teach the lesson in their classes and the lessons are videotaped. Subsequent workshops focus on participants' classroom experiences teaching the problem. The goals of these workshops are to help teachers learn how to build on student thinking and to explore a variety of instructional practices. They rely heavily on video clips from the PSC lesson to foster productive conversations and situate the conversations in teachers' classroom instruction. The MLP model is designed to prepare Math Leaders to facilitate the PSC. The MLP prepares teachers to lead professional development for their colleagues. These models showed promise of effectiveness in improving middle school mathematics teachers' knowledge and practice, developing math professional development leaders, and improving student achievement. Investigators intend to refine and test the design of the PSC and MLP models and develop resources that can be used by other schools and districts, as well as conduct an evaluation of the work.

CAREER: L-MAP: Pre-service Middle School Teachers' Knowledge of Mathematical Argumentation and Proving

This program of research will examine how middle school pre-service teachers' knowledge of mathematical argumentation and proving develops in teacher preparation programs. The project explores the research question: What conceptions of mathematical reasoning and proving do middle school preservice teachers hold in situations that foster reasoning about change, proportionality, and proportional relationships, as they enter their mathematics course sequence in their teacher preparation program, and how do these conceptions evolve throughout the program?

Lead Organization(s): 
Award Number: 
1350802
Funding Period: 
Tue, 07/15/2014 to Tue, 06/30/2020
Full Description: 

The field of mathematics teacher education needs a strong understanding of pre-service teachers' knowledge about the practice of mathematical argumentation and proof, including the development of this knowledge, to effectively move pre-service teachers toward a more sophisticated understanding and enactment of this practice with their own students. The integrated research and educational activities will contribute to the knowledge base teacher education programs need to effectively prepare middle school teachers for meeting the challenges of how to make reasoning and proof an integral aspect of instructional practice. The research results have the potential to guide teacher educators and educational researchers concerned with strengthening pre-service teachers' ability to make reasoning and proving an integral aspect of school mathematics. Consequently, pre-service teachers will be better equipped to develop mathematical reasoning skills in their future students and to support their students in learning mathematics with understanding. Given this country's growing need for a competent STEM workforce, helping all students learn mathematics in a way that supports deeper understanding is a priority. Additionally, the support of early CAREER scholars in mathematics education will add to the capacity of the country to address issues in mathematics education in the future.

The objective of this program of research is to examine how middle school pre-service teachers' knowledge of mathematical argumentation and proving develops in teacher preparation programs. The project explores the research question: What conceptions of mathematical reasoning and proving do middle school preservice teachers hold in situations that foster reasoning about change, proportionality, and proportional relationships, as they enter their mathematics course sequence in their teacher preparation program, and how do these conceptions evolve throughout the program? This development will be studied along three dimensions: (a) pre-service teachers' own ability to formulate mathematical arguments, (b) their ability to analyze mathematical arguments, and (c) their ability to analyze situations that engage students in mathematical argumentation and proving. Cross-sectional and longitudinal studies of 60 pre-service teachers' models, or systems of interpretation, of mathematical argumentation and proof in curricular context that foster reasoning about change, proportionality and proportional relationships will be conducted to provide an understanding of the trajectory that captures how pre-service teachers develop their knowledge of mathematical argumentation and proving throughout their university mathematics preparation program and into their student teaching.

CAREER: Leveraging Contrasting Cases to Investigate Integer Understanding

Most students learn about negative numbers long after they have learned about positive numbers, and they have little time or opportunity to build on their prior understanding by contrasting the two concepts. The purpose of this CAREER project is to identify language factors and instructional sequences that contribute to improving elementary students' understanding of addition and subtraction problems involving negative integers. 

Lead Organization(s): 
Award Number: 
1350281
Funding Period: 
Thu, 05/15/2014 to Fri, 04/30/2021
Full Description: 

Currently, most students learn about negative numbers long after they have learned about positive numbers, and they have little time or opportunity to build on their prior understanding by contrasting the two concepts. Therefore, they struggle to make sense of negative integer concepts, which appear to conflict with their current understanding. The purpose of this CAREER project is to identify language factors and instructional sequences that contribute to improving elementary students' understanding of addition and subtraction problems involving negative integers. A second objective is to identify how elementary teachers interpret their students' integer understanding and use research findings to support their teaching of these concepts. This project is expected to contribute to theories regarding the development of integer understanding as well as what makes a useful contrasting case when learning new, related concepts. Moreover, the results of this project can contribute to our understanding of how to build on students? prior number knowledge rather than contradict it.

The principal investigator will conduct a series of four experimental studies involving a preparation for learning component with students randomly assigned to treatment or control groups. Study 1 will involve second and fourth graders and will test the language factors that support students' understanding of integers. Studies 2-4 will involve second and fifth graders and will test the optimal order in which integer addition and subtraction problems are presented in contrast with each other versus sequentially without contrasts. Using items that measure students? understanding of integers and integer operations, the PI will compare students' gains from pre-tests to post-tests between groups. Further, the investigator will qualitatively code students? solution strategies based on follow-up interviews and written work for additional information on the differences between groups. Following the experimental studies, the PI will work with elementary teachers over three lesson study cycles, during which teachers will implement instruction based on the prior studies? results. The PI will compare the performance of students who participate in the lesson study unit versus control classrooms to measure impact of the unit.

Videos of the lesson study unit, as well as the negative integer lesson plans will be made available for other teachers and teacher educators to use. Further, the investigator will incorporate the research results into an undergraduate mathematics methods course. To ensure that the results of this research reach a wider audience, the investigator will create an integer game and storybook, illustrating key concepts identified through the research, that parents can explore together with their children during family math nights and at home. On a broader scale, this project has the potential to illuminate ways to develop more coherence in the sequencing of mathematics topics to more effectively build on students? current understanding.

CAREER: Algebraic Knowledge for Teaching: A Cross-Cultural Perspective

The goal of this CAREER program of research is to identify, from a cross-cultural perspective, essential Algebraic Knowledge for Teaching (AKT) that will enable elementary teachers to better develop students' algebraic thinking. This study explores AKT based on integrated insights of the U.S. and Chinese expert teachers' classroom performance.

Lead Organization(s): 
Award Number: 
1350068
Funding Period: 
Fri, 08/15/2014 to Fri, 07/31/2020
Full Description: 

What content knowledge is needed for the teaching of mathematics? What practices are more effective for realizing student success? These questions have received considerable attention in the mathematics education community. The goal of this CAREER program of research is to identify, from a cross-cultural perspective, essential Algebraic Knowledge for Teaching (AKT) that will enable elementary teachers to better develop students' algebraic thinking. Focusing on two fundamental mathematical ideas recently emphasized by the Common Core State Standards - inverse relations and properties of operations - this study explores AKT based on integrated insights of the U.S. and Chinese expert teachers' classroom performance. It will be focused on three objectives: (1) identify AKT that facilitates algebraic thinking and develop preliminary findings into teaching materials; (2) refine research-based teaching materials based on the evaluative data; and (3) integrate research with education through course development at Temple University and teacher outreach in Philadelphia.

The model underlying this research program is that improved pedagogy will improve student learning, both directly and indirectly. A design-based research method will be used to accomplish objectives #1 and #2. Cross-cultural videotaped lessons will be first analyzed to identify AKT, focusing on teachers' use of worked examples, representations, and deep questions. This initial set of findings will then be developed into teaching materials. The U.S. and Chinese expert teachers will re-teach the lessons as part of the refinement process. Data sources will include: baseline and updated survey data (control, context, and process variables), observation, documents, videos, and interviews. The statistical techniques will include descriptive and inferential statistics and HLM will to address the hierarchical nature of the data.

This project involves students and teachers at various levels (elementary, undergraduate, and graduate) at Temple University and the School District of Philadelphia (SDP) in the U.S. and Nanjing Normal University and Nantong School District in China. A total of 600 current and future elementary teachers and many of their students will benefit directly or indirectly from this project. Project findings will be disseminated through various venues. Activities of the project will promote school district-university collaboration, a novice-expert teacher network, and cross-disciplinary and international collaboration. It is anticipated that the videos of expert teaching will also be useful future research by cognitive researchers studying ways to improve mathematics learning.

Publications
G indicates graduate student author; U indicates undergraduate student author

Book

Journal Articles in English

  1. Ding, M., Li, X., G Hassler, R., & G Barnett, E. (2021). Understanding of the properties of operations: A cross-cultural analysis. International Journal of Mathematical Education in Science and Technology, 52(1), 39-64. doi: 10.1080/0020739X.2019.1657595. PDF
  2. Ding, M., G Hassler, R., & Li., X. (2020). Cognitive instructional principles in elementary mathematics classrooms: A case of teaching inverse relations. International Journal of Mathematical Education in Science and Technology. doi: 10.1080/0020739X.2020.1749319
  3. Ding, M., G Chen, W., & G Hassler, R. (2019). Linear quantity models in the US and Chinese elementary mathematics classrooms. Mathematical Thinking and Learning, 21, 105-130 doi: 10.1080/10986065.2019.1570834 . PDF
  4. Barnett, E., & Ding, M. (2019). Teaching of the associative property: A natural classroom investigation. Investigations of Mathematics Learning, 11, 148-166. doi: 10.1080/19477503.2018.1425592  PDF
  5. Ding, M., & G Heffernan, K. (2018). Transferring specialized content knowledge to elementary classrooms: Preservice teachers’ learning to teach the associative property. International Journal of Mathematics Educational in Science and Technology, 49, 899-921.doi: 10.1080/0020739X.2018.1426793 PDF
  6. Ding, M. (2018). Modeling with tape diagrams. Teaching Children Mathematics25, 158-165. doi: 10.5951/teacchilmath.25.3.0158  PDF
  7. G Chen, W., & Ding, M.* (2018). Transitioning from mathematics textbook to classroom instruction: The case of a Chinese expert teacher. Frontiers of Education in China, 13, 601-632. doi: 10.1007/s11516-018-0031-z (*Both authors contributed equally). PDF
  8. Ding, M., & G Auxter, A. (2017). Children’s strategies to solving additive inverse problems: A preliminary analysis. Mathematics Education Research Journal, 29, 73-92. doi:10.1007/s13394-017-0188-4  PDF
  9. Ding, M. (2016).  Developing preservice elementary teachers’ specialized content knowledge for teaching fundamental mathematical ideas: The case of associative property. International Journal of STEM Education, 3(9), 1-19doi: 10.1186/s40594-016-0041-4  PDF
  10. Ding, M. (2016). Opportunities to learn: Inverse operations in U.S. and Chinese elementary mathematics textbooks. Mathematical Thinking and Learning, 18, 45-68. doi: 10.1080/10986065.2016.1107819  PDF

Journal Articles in Chinese
Note: The Chinese journals Educational Research and Evaluation (Elementary Education and Instruction教育研究与评论 (小学教育教学) and Curriculum and Instructional Methods (课程教材教法) are both official, core journals in mathematics education field in China.

  1. Chen, W. (2018). Strategies to deal with mathematical representations – an analysis of expert’s classroom instruction. Curriculum and Instructional Methods. 数学教学的表征处理策略——基于专家教师的课堂教学分析. 课程教材教法. PDF
  2. Ma, F. ( 2018) – Necessary algebraic knowledge for elementary teachers- an ongoing cross-cultural study. Educational Research and Evaluation (Elementary Education and Instruction), 2, 5-7.  小学教师必备的代数学科知识-跨文化研究进行时。教育研究与评论 (小学教育教学), 2, 5-7. PDF
  3. Chen, J. (2018) Infusion and development of children’s early algebraic thinking – a comparative study of the US and Chinese elementary mathematics teaching. Educational Research and Evaluation (Elementary Education and Instruction), 2, 8-13.  儿童早期代数思维的渗透与培养-中美小学数学教学比较研究。教育研究与评论(小学教育教学),28-13.  PDF
  4. Zong, L. (2018). A comparative study on the infusion of inverse relations in the US and Chinese classroom teaching. Educational Research and Evaluation (Elementary Education and Instruction), 2, 14-19.  中美逆运算渗透教学对比研究。教育研究与评论(小学教育教学,2,14-19.  PDF
  5. Wu, X. (2018). Mathematical representations and development of children’s mathematical thinking: A perspective of US-Chinese comparison. Educational Research and Evaluation (Elementary Education and Instruction), 2, 20-24.  数学表征与儿童数学思维发展-基于中美比较视角。教育研究与评论(小学教育教学,2, 20-24.  PDF

Dissertations

  1. Hassler, R. (2016). Mathematical comprehension facilitated by situation models: Learning opportunities for inverse relations in elementary school.Published dissertation, Temple University, Philadelphia, PA. (Chair: Dr. Meixia Ding)  PDF
  2. Chen, W. (2018). Elementary mathematics teachers’ professional growth: A perspectives of TPACK (TPACK 视角下小学数学教师专业发展的研究). Dissertation, Nanjing Normal University. Nanjing, China. PDF

National Presentations
G indicates graduate student author; U indicates undergraduate student author

  • Ding, M., G Spiro, B., & G Mochaourab, R. (2021). Promoting changes in elementary mathematics teaching: A case study. Presented at 2021 AERA annual conference (virtual).
  • Alibali, M. W., Ding, M., Yeo, A., Huang, H. & Meng, R. (2020, April) Linking Representations of Equality in First-Grade Mathematics Lessons in China [Roundtable Session]. AERA Annual Meeting San Francisco, CA http://tinyurl.com/sjs4ebe (Conference Canceled)
  • Ding, M. (2020, April). Worked examples in elementary mathematics classrooms: A cross-cultural analysis[Paper Session]. AERA Annual Meeting, San Francisco, CA (Conference Canceled).  Paper presented in AERA Interactive Presentation Gallery on July 31th 2020.
  • Ding, M (symposium organizer, 2019, April). Enhancing elementary mathematics instruction: A U.S.-China collaboration. Papers presented at NCTM research conference (Discussant: Jinfa Cai). (The following three action research papers were written by my NSF project teachers under my guidance).
      • Milewski Moskal, M., & Varano, A. (2019). The teaching of worked examples: Chinese approaches in U.S. classrooms. Paper 
      • Larese, T., Milewski Moskal, M., Ottinger, M., & Varano, A., (2019). Introducing Investigations math games in China: Successes and surprises. Paper
      • Murray, D., Seidman, J., Blackmon, E., Maimon, G., & Domsky, A. (2019). Mathematic instruction across two cultures: A teacher perspective. Paper
    • Ding, M., & Ying Y. (2018, June). CAREER: Algebraic knowledge for teaching: A cross-cultural perspective. Poster presentation at the National Science Foundation (NSF) PI meeting, Washington, DC.  Poster
    • Ding, M., Brynes, J., G Barnett, E., & Hassler, R. (2018, April). When classroom instruction predicts students’ learning of early algebra: A cross-cultural opportunity-propensity analysis. Paper presented at 2018 AERA conference. New York, NY.  Paper
    • Ding, M., Li, X., Manfredonia, M., & Luo, W. (2018, April). Video as a tool to support teacher learning: A Cross-cultural analysis. Paper presented at 2018 NCTM conference. Washington, DC.  PPT
    • GBarnett, E., & Ding, M. (2018, April). Teaching the basic properties of arithmetic: A natural classroom investigation of associativity. Poster presentation at 2018AERA conference, New York, NY.  Poster
    • Hassler, R., & Ding, M. (2018, April). The role of deep questions in promoting elementary students’ mathematical comprehension. Poster presentation at 2018AERA conference, New York, NY.
    • Ding, M., G Chen, W., G Hassler, R., Li, X., & G Barnett, E. (April, 2017). Comparisons in the US and Chinese elementary mathematics classrooms. Poster presentation at AERA 2017 conference (In the session of “Advancing Mathematics Education Through NSF’s DRK-12 Program”). San Antonio, TX. Poster
    • Ding, M., Li, X., G Hassler, R., & G Barnett, E. (April, 2017). Understanding the basic properties of operations in US and Chinese elementary School. Paper presented at AERA 2017 conference. San Antonio, TX.  Paper
    • Ding, M., G Chen, W., & G Hassler, R. (April, 2017). Tape diagrams in the US and Chinese elementary mathematics classrooms. Paper presented at NCTM 2017 conference. San Antonio, TX.  Paper
    • Ding, M., & G Hassler, R. (2016, June). CAREER: Algebraic knowledge for teaching in elementary school: A cross-cultural perspective. Poster presentation at the NSF PI meeting, Washington, DC. Poster
    • Ding, M. (symposium organizer, 2016, April). Early algebraic in elementary school: A cross-cultural perspective. Proposals presented at 2016 AERA conference, Washington, DC.
        • Ding, M. (2016, April). A comparative analysis of inverse operations in U.S. and Chinese elementary mathematics textbooks. Paper 
        • G Hassler, R. (2016, April). Elementary Textbooks to Classroom Teaching: A Situation Model Perspective. Paper
        • G Chen, W., & Ding, M. (2016, April). Transitioning textbooks into classroom teaching: An action research on Chinese elementary mathematics lessons. Paper
        • Li, X., G Hassler, R., & Ding, M. (2016, April). Elementary students’ understanding of inverse relations in the U.S. and China.  Paper
        • Stull, J., Ding, M., G Hassler, R., Li, X., & U George, C. (2016, April). The impact of algebraic knowledge for teaching on student learning: A Preliminary analysis. Paper
      • Ding, M., G Hassler, R., Li., X., & G Chen, W. (2016, April). Algebraic knowledge for teaching: An analysis of US experts' lessons on inverse relations. Paper presented at 2016 NCTM conference, San Francisco, CA. Paper
      • G Hassler. R., & Ding, M. (2016, April). Situation model perspective on mathematics classroom teaching: A case study on inverse relations. Paper presented at 2016 NCTM conference, San Francisco, CA.  Paper
      • Ding, M., & G Copeland, K. (2015, April). Transforming specialized content knowledge: Preservice elementary teachers’ learning to teach the associative property of multiplication. Paper presented at AERA 2015 conference, Chicago, IL. Paper PPT
      • Ding, M., & G Auxter, A. (2015, April). Children’s strategies to solving additive inverse problems: A preliminary analysis. Paper presented at AERA 2015 conference, Chicago, IL.  Paper

      Moving Next Generation Science Standards into Practice: A Middle School Ecology Unit and Teacher Professional Development Model

      Schools and teachers face unprecedented challenges in meeting the ambitious goals of integrating core interdisciplinary science ideas with science and engineering practices as described in new standards. This project will develop a middle school ecology unit and related teacher professional development that will help high-need and urban middle school students, including English Language Learners, understand these ideas and related practices.

      Award Number: 
      1418235
      Funding Period: 
      Mon, 09/01/2014 to Fri, 08/31/2018
      Full Description: 

      Schools and teachers face unprecedented challenges in meeting the ambitious goals of integrating core interdisciplinary science ideas with science and engineering practices as described in new standards. The American Museum of Natural History (AMNH), in collaboration with the University of Connecticut (UConn), and the Lawrence Hall of Science (the Hall), will develop a middle school ecology unit and related teacher professional development that will help high-need and urban middle school students, including English Language Learners, understand these ideas and related practices. Teachers will be supported through professional development that is directly linked to the curriculum and is designed to develop their science content knowledge as well as their knowledge of how to teach the curriculum. The project builds on existing AMNH resources that include video and text passages supported with literacy strategies, online interactive data tools to plan and carry out investigations, and prior research on these resources used with teachers in professional development and with students in classrooms. In addition to serving the schools, teachers and students who directly participate, the project's deliverables include the ecology unit, teacher professional development, assessment tools, and a model for designing such comprehensives science programs that relate to NGSS.

      The curriculum unit will be modeled after the Biological Sciences Curriculum Study (BSCS) 5E model that will use the 5 Phases (Engage, Explore, Explain, Elaborate, and Evaluate) for students to work through with each of five themes: Ecological Communities, Food Webs, A River Ecosystem, Zebra Mussel Invasion, and Monitoring Human Impact. Teachers will participate in 12 days of professional development that will introduce the program's pedagogical approach (the 5E model) and how it reflects NGSS, with teachers having significant time to learn the science, try out the activities, learn how to facilitate the program, provide feedback on the program as part of the evaluation, and reflect on their practice. The initial approach to the curriculum and teacher professional development will be designed in Year 1 and then iteratively revised and evaluated in Years 2-4 through formative evaluation that focuses on curriculum PD, and measures of student and teacher outcomes. The evaluation will assess the contribution of teacher science and pedagogical knowledge to increases in student knowledge. The evaluation findings and assessment tools developed for the project will provide the foundation for a future efficacy study. The project is one of a relatively small number of projects funded through NSF's DRK-12 program that directly addresses the need for NGSS-related learning resources. The project's learning resources, assessment tools, and model for designing NGSS-related and comprehensive science programs will be shared through professional publications, conference and workshop presentations, and liaison with organizations active in developing new resources bring NGSS into practice.

      Disruptions Curriculum Website, with links to Discruptions in Ecosystems:

      Inventory of items for assessing teachers' knowledge of content and PCK

      Teaching Environmental Sustainability - Model My Watershed (Collaborative Research: Staudt)

      This project will develop curricula for environmental/geoscience disciplines for high-school classrooms. The Model My Watershed (MMW) v2 app will bring new environmental datasets and geospatial capabilities into the classroom, to provide a cloud-based learning and analysis platform accessible from a web browser on any computer or mobile device, thus overcoming the cost and technical obstacles to integrating Geographic Information System technology in secondary education.

      Lead Organization(s): 
      Award Number: 
      1417722
      Funding Period: 
      Mon, 09/01/2014 to Fri, 08/31/2018
      Full Description: 

      This project will develop curricula for environmental/geoscience disciplines for high-school classrooms. It will teach a systems approach to problem solving through hands-on activities based on local data and issues. This will provide an opportunity for students to act in their communities while engaging in solving problems they find interesting, and require synthesis of prior learning. The Model My Watershed (MMW) v2 app will bring new environmental datasets and geospatial capabilities into the classroom, to provide a cloud-based learning and analysis platform accessible from a web browser on any computer or mobile device, thus overcoming the cost and technical obstacles to integrating Geographic Information System technology in secondary education. It will also integrate new low-cost environmental sensors that allow students to collect and upload their own data and compare them to data visualized on the new MMW v2. This project will transform the ability of teachers throughout the nation to introduce hands-on geospatial analysis activities in the classroom, to explore a wide range of geographic, social, political and environmental concepts and problems beyond the project's specific curricular focus.

      The Next Generation Science Standards state that authentic research experiences are necessary to enhance STEM learning. A combination of computational modeling and data collection and analysis will be integrated into this project to address this need. Placing STEM content within a place- and problem-based framework enhances STEM learning. Students, working in groups, will not only design solutions, they will be required to defend them within the application portal through the creation of multimedia products such as videos, articles and web 2.0 presentations. The research plan tests the overall hypothesis that students are much more likely to develop an interest in careers that require systems thinking and/or spatial thinking, such as environmental sciences, if they are provided with problem-based, place-based, hands-on learning experiences using real data, authentic geospatial analysis tools and models, and opportunities to collect their own supporting data. The MMW v2 web app will include a data visualization tool that streams data related to the modeling application. This database will be modified to integrate student data so teachers and students can easily compare their data to data collected by other students and the government and research data. All data will be easily downloadable so that students can increase the use of real data to support the educational exercises. As a complement to the model-based activities, the project partners will design, manufacture, and distribute a low-cost environmental monitoring device, called the Watershed Tracker. This device will allow students to collect real-world data to enhance their understanding of watershed dynamics. Featuring temperature, light, humidity, and soil moisture sensors, the Watershed Tracker will be designed to connect to tablets and smartphones through the audio jack common to all of these devices.

      Learning about Ecosystems Science and Complex Causality through Experimentation in a Virtual World

      This project will develop a modified virtual world and accompanying curriculum for middle school students to help them learn to more deeply understand ecosystems patterns and the strengths and limitations of experimentation in ecosystems science. The project will build upon a computer world called EcoMUVE, a Multi-User Virtual Environment or MUVE, and will develop ways for students to conduct experiments within the virtual world and to see the results of those experiments.

      Project Email: 
      Lead Organization(s): 
      Award Number: 
      1416781
      Funding Period: 
      Mon, 09/01/2014 to Thu, 08/31/2017
      Full Description: 

      EcoXPT from videohall.com on Vimeo.

      Comprehending how ecosystems function is important knowledge for citizens in making decisions and for students who aspire to become scientists. This understanding requires deep thinking about complex causality, unintended side-effects, and the strengths and limitations of experimental science. These are difficult concepts to learn due to the many interacting components and non-linear interrelationships involved. Ecosystems dynamics is particularly difficult to teach in classrooms because ecosystems involve complexities such as phenomena distributed widely across space that change over long time frames. Learning when and how experimental science can provide useful information in understanding ecosystems dynamics requires moving beyond the limited affordances of classrooms. The project will: 1) advance understanding of experimentation in ecosystems as it can be applied to education; 2) show how student learning is affected by having opportunities to experiment in the virtual world that simulate what scientists do in the real world and with models; and 3) produce results comparing this form of teaching to earlier instructional approaches. This project will result in a learning environment that will support learning about the complexities of the earth's ecosystem.

      The project will build upon a computer world called EcoMUVE, a Multi-User Virtual Environment or MUVE, developed as part of an earlier NSF-funded project. A MUVE is a simulated world in which students can virtually walk around, make observations, talk to others, and collect data. EcoMUVE simulates a pond and a forest ecosystem. It offers an immersive context that makes it possible to teach about ecosystems in the classroom, allowing exploration of the complexities of large scale problems, extended time frames and and multiple causality. To more fully understand how ecosystems work, students need the opportunity to experiment and to observe what happens. This project will advance this earlier work by developing ways for students to conduct experiments within the virtual world and to see the results of those experiments. The project will work with ecosystem scientists to study the types of experiments that they conduct, informing knowledge in education about how ecosystem scientists think, and will build opportunities for students that mirror what scientists do. The project will develop a modified virtual world and accompanying curriculum for middle school students to help them learn to more deeply understand ecosystems patterns and the strengths and limitations of experimentation in ecosystems science. The resulting program will be tested against existing practice, the EcoMUVE program alone, and other programs that teach aspects of ecosystems dynamics to help teachers know how to best use these curricula in the classroom.

      Working with Middle School Science Teachers to Design and Implement an Interactive Data Dashboard

      This project will work with middle school science teachers to design and evaluate a set of data management tools that will be embedded in a web-based science curriculum. The project helps middle school science teachers monitor their students' progress, plan lessons, and reflect on their lessons. This project will identify characteristics of data management tools that are more likely to be used effectively by teachers and have a positive impact on science teaching and learning.

      Lead Organization(s): 
      Partner Organization(s): 
      Award Number: 
      1417705
      Funding Period: 
      Fri, 08/01/2014 to Mon, 07/31/2017
      Full Description: 

      The William Marsh Rice University project will work with middle school science teachers to design, field-test, refine, and evaluate a set of data management tools that will be embedded in a web-based science curriculum. The project helps middle school science teachers monitor their students' progress, plan lessons, and reflect on their lessons. The project consists of three primary phases: first, the researchers will work with teachers to develop an initial set of data tools; second, teachers will test these tools in their classroom to verify that they are feasible and usable; and third, a pilot study will be conducted to examine how the tools are implemented in the classroom and an external evaluation will determine the early impact of the tools. As part of this study, the research team will work with 125 middle school science teachers across three different school districts. Ultimately, the findings from this project will identify characteristics of data management tools that are more likely to be used effectively by teachers and have a positive impact on science teaching and learning.

      The project is employing a mixed methods design. Through design-based research, this project will help fill the need for research-based and teacher-driven design of online student management systems. During the first two years of the study, work will alternate between design/development and data collection, allowing the research team to collect and then incorporate teacher feedback into the tools' design. During these first two years, data will be collected through teacher surveys, interviews, and observations. The culmination of the project will be a one-year pilot, which will allow the research team to study the implementation of the final tools, and an independent evaluator from the University of Houston to evaluate the early impact of the tools on teaching practices and student achievement. The development and research proposed in this project will benefit teachers and students throughout the United States by improving what data teachers see about their students' progress in science and their own use of the curriculum.

      Pages

      Subscribe to Instructional Practice