Instructional Practice

Understanding STEM Teaching through Integrated Contexts in Everyday Life (Collaborative Research: Marco-Bujosa)

Increased focus on school accountability and teacher performance measures have resulted in STEM instruction that emphasizes content and procedural knowledge over critical thinking and real-world applications. Yet, critical thinking and application are essential in developing functional scientific literacy skills among students. This need is perhaps most pressing in economically depressed urban settings. One strategy to promote STEM engagement and learning is to make clear and meaningful connections between STEM concepts, principles, and STEM-related issues relevant to the learner.

Lead Organization(s): 
Award Number: 
2101144
Funding Period: 
Thu, 07/01/2021 to Mon, 06/30/2025
Full Description: 

Increased focus on school accountability and teacher performance measures have resulted in science, technology, engineering, and mathematics (STEM) instruction that emphasizes content and procedural knowledge over critical thinking and real-world applications. Yet, critical thinking and application are essential in developing functional scientific literacy skills among students. This need is perhaps most pressing in economically depressed urban settings. One strategy to promote STEM engagement and learning is to make clear and meaningful connections between STEM concepts, principles, and STEM-related issues relevant to the learner. Socioscientific issues (SSI) can provide a powerful avenue for promoting the desired kinds of engagement. SSI are debatable and ill-defined problems that have a basis in science but necessarily include moral and ethical choices. SSI for economically disadvantaged, culturally diverse students in urban settings might include, for example, lead paint contamination, poor water or air quality, or the existence of “food deserts.” By integrating locally relevant SSI with the goals of social justice, the Social Justice STEM Pedagogies (SJSP) framework the project uses is intended to support students to use their scientific expertise to be agents of change. SJSP can be potentially transformative for teachers, students, schools, and the communities in which students live. For SJSP to effectively promote STEM learning, however, teachers must learn how to integrate STEM-concepts and practices into the various real-world SSI present in their students’ environment. This collaborative project is designed to implement and evaluate a comprehensive professional development plan for grades 7 –12 STEM teachers from economically disadvantaged school districts in Philadelphia and surrounding areas. Teachers will develop ways to incorporate SSI into their instruction that are grounded in standards to foster students’ STEM engagement. The instructional practices enacted by teachers will enhance students’ STEM literacy while utilizing their own knowledge and culture in solving complex and ethically challenging STEM issues, thus promoting students’ abilities to be change agents.

This collaborative research project involves Arcadia University, Mercyhurst University, LaSalle University, Villanova University, and St. Joseph’s University. It is designed to investigate the effectiveness of a professional development (PD) program for STEM teachers to develop their pedagogical content knowledge (PCK) in teaching SSI and SJSP. Over four years, three cohorts of 25 grades 7-12 teachers will participate in about 200 hours of PD. The SSI and SJSP encompass authentic, complex real-world, STEM-based issues that are directly related to the inequities experienced by students and their communities that students can engage with in the classroom through the use of inquiry-based learning strategies. By promoting students’ engagement in and awareness of the relevance of STEM in everyday life, teacher participants in this PD will foster STEM learning, especially among students who have been historically marginalized from STEM disciplines, and who are from economically disadvantaged backgrounds. The research plan is designed to reveal elements of the PD program that are most effective in supporting teachers’ increased capacity to design and implement units of study that incorporate scientific, social, and discursive elements of SSI. Using predominantly qualitative methods, other outcomes include how teachers’ PCK change towards teaching with SSI/SJSP; what factors support and inhibit teacher’s abilities to promote SSI/SJSP; and how justice-centered STEM lessons help students to develop moral and ethical reasoning, scientific skepticism, STEM inquiry/modeling, and SSI discourse/argumentation.

Understanding STEM Teaching through Integrated Contexts in Everyday Life (Collaborative Research: Johnson)

Increased focus on school accountability and teacher performance measures have resulted in STEM instruction that emphasizes content and procedural knowledge over critical thinking and real-world applications. Yet, critical thinking and application are essential in developing functional scientific literacy skills among students. This need is perhaps most pressing in economically depressed urban settings. One strategy to promote STEM engagement and learning is to make clear and meaningful connections between STEM concepts, principles, and STEM-related issues relevant to the learner.

Lead Organization(s): 
Award Number: 
2101287
Funding Period: 
Thu, 07/01/2021 to Mon, 06/30/2025
Full Description: 

Increased focus on school accountability and teacher performance measures have resulted in science, technology, engineering, and mathematics (STEM) instruction that emphasizes content and procedural knowledge over critical thinking and real-world applications. Yet, critical thinking and application are essential in developing functional scientific literacy skills among students. This need is perhaps most pressing in economically depressed urban settings. One strategy to promote STEM engagement and learning is to make clear and meaningful connections between STEM concepts, principles, and STEM-related issues relevant to the learner. Socioscientific issues (SSI) can provide a powerful avenue for promoting the desired kinds of engagement. SSI are debatable and ill-defined problems that have a basis in science but necessarily include moral and ethical choices. SSI for economically disadvantaged, culturally diverse students in urban settings might include, for example, lead paint contamination, poor water or air quality, or the existence of “food deserts.” By integrating locally relevant SSI with the goals of social justice, the Social Justice STEM Pedagogies (SJSP) framework the project uses is intended to support students to use their scientific expertise to be agents of change. SJSP can be potentially transformative for teachers, students, schools, and the communities in which students live. For SJSP to effectively promote STEM learning, however, teachers must learn how to integrate STEM-concepts and practices into the various real-world SSI present in their students’ environment. This collaborative project is designed to implement and evaluate a comprehensive professional development plan for grades 7 –12 STEM teachers from economically disadvantaged school districts in Philadelphia and surrounding areas. Teachers will develop ways to incorporate SSI into their instruction that are grounded in standards to foster students’ STEM engagement. The instructional practices enacted by teachers will enhance students’ STEM literacy while utilizing their own knowledge and culture in solving complex and ethically challenging STEM issues, thus promoting students’ abilities to be change agents.

This collaborative research project involves Arcadia University, Mercyhurst University, LaSalle University, Villanova University, and St. Joseph’s University. It is designed to investigate the effectiveness of a professional development (PD) program for STEM teachers to develop their pedagogical content knowledge (PCK) in teaching SSI and SJSP. Over four years, three cohorts of 25 grades 7-12 teachers will participate in about 200 hours of PD. The SSI and SJSP encompass authentic, complex real-world, STEM-based issues that are directly related to the inequities experienced by students and their communities that students can engage with in the classroom through the use of inquiry-based learning strategies. By promoting students’ engagement in and awareness of the relevance of STEM in everyday life, teacher participants in this PD will foster STEM learning, especially among students who have been historically marginalized from STEM disciplines, and who are from economically disadvantaged backgrounds. The research plan is designed to reveal elements of the PD program that are most effective in supporting teachers’ increased capacity to design and implement units of study that incorporate scientific, social, and discursive elements of SSI. Using predominantly qualitative methods, other outcomes include how teachers’ PCK change towards teaching with SSI/SJSP; what factors support and inhibit teacher’s abilities to promote SSI/SJSP; and how justice-centered STEM lessons help students to develop moral and ethical reasoning, scientific skepticism, STEM inquiry/modeling, and SSI discourse/argumentation.

Understanding STEM Teaching through Integrated Contexts in Everyday Life (Collaborative Research: Richardson)

Increased focus on school accountability and teacher performance measures have resulted in STEM instruction that emphasizes content and procedural knowledge over critical thinking and real-world applications. Yet, critical thinking and application are essential in developing functional scientific literacy skills among students. This need is perhaps most pressing in economically depressed urban settings. One strategy to promote STEM engagement and learning is to make clear and meaningful connections between STEM concepts, principles, and STEM-related issues relevant to the learner.

Lead Organization(s): 
Award Number: 
2101324
Funding Period: 
Thu, 07/01/2021 to Mon, 06/30/2025
Full Description: 

Increased focus on school accountability and teacher performance measures have resulted in science, technology, engineering, and mathematics (STEM) instruction that emphasizes content and procedural knowledge over critical thinking and real-world applications. Yet, critical thinking and application are essential in developing functional scientific literacy skills among students. This need is perhaps most pressing in economically depressed urban settings. One strategy to promote STEM engagement and learning is to make clear and meaningful connections between STEM concepts, principles, and STEM-related issues relevant to the learner. Socioscientific issues (SSI) can provide a powerful avenue for promoting the desired kinds of engagement. SSI are debatable and ill-defined problems that have a basis in science but necessarily include moral and ethical choices. SSI for economically disadvantaged, culturally diverse students in urban settings might include, for example, lead paint contamination, poor water or air quality, or the existence of “food deserts.” By integrating locally relevant SSI with the goals of social justice, the Social Justice STEM Pedagogies (SJSP) framework the project uses is intended to support students to use their scientific expertise to be agents of change. SJSP can be potentially transformative for teachers, students, schools, and the communities in which students live. For SJSP to effectively promote STEM learning, however, teachers must learn how to integrate STEM-concepts and practices into the various real-world SSI present in their students’ environment. This collaborative project is designed to implement and evaluate a comprehensive professional development plan for grades 7 –12 STEM teachers from economically disadvantaged school districts in Philadelphia and surrounding areas. Teachers will develop ways to incorporate SSI into their instruction that are grounded in standards to foster students’ STEM engagement. The instructional practices enacted by teachers will enhance students’ STEM literacy while utilizing their own knowledge and culture in solving complex and ethically challenging STEM issues, thus promoting students’ abilities to be change agents.

This collaborative research project involves Arcadia University, Mercyhurst University, LaSalle University, Villanova University, and St. Joseph’s University. It is designed to investigate the effectiveness of a professional development (PD) program for STEM teachers to develop their pedagogical content knowledge (PCK) in teaching SSI and SJSP. Over four years, three cohorts of 25 grades 7-12 teachers will participate in about 200 hours of PD. The SSI and SJSP encompass authentic, complex real-world, STEM-based issues that are directly related to the inequities experienced by students and their communities that students can engage with in the classroom through the use of inquiry-based learning strategies. By promoting students’ engagement in and awareness of the relevance of STEM in everyday life, teacher participants in this PD will foster STEM learning, especially among students who have been historically marginalized from STEM disciplines, and who are from economically disadvantaged backgrounds. The research plan is designed to reveal elements of the PD program that are most effective in supporting teachers’ increased capacity to design and implement units of study that incorporate scientific, social, and discursive elements of SSI. Using predominantly qualitative methods, other outcomes include how teachers’ PCK change towards teaching with SSI/SJSP; what factors support and inhibit teacher’s abilities to promote SSI/SJSP; and how justice-centered STEM lessons help students to develop moral and ethical reasoning, scientific skepticism, STEM inquiry/modeling, and SSI discourse/argumentation.

Understanding STEM Teaching through Integrated Contexts in Everyday Life (Collaborative Research: Macalalag)

Increased focus on school accountability and teacher performance measures have resulted in STEM instruction that emphasizes content and procedural knowledge over critical thinking and real-world applications. Yet, critical thinking and application are essential in developing functional scientific literacy skills among students. This need is perhaps most pressing in economically depressed urban settings. One strategy to promote STEM engagement and learning is to make clear and meaningful connections between STEM concepts, principles, and STEM-related issues relevant to the learner.

Lead Organization(s): 
Award Number: 
2101395
Funding Period: 
Thu, 07/01/2021 to Mon, 06/30/2025
Full Description: 

Increased focus on school accountability and teacher performance measures have resulted in science, technology, engineering, and mathematics (STEM) instruction that emphasizes content and procedural knowledge over critical thinking and real-world applications. Yet, critical thinking and application are essential in developing functional scientific literacy skills among students. This need is perhaps most pressing in economically depressed urban settings. One strategy to promote STEM engagement and learning is to make clear and meaningful connections between STEM concepts, principles, and STEM-related issues relevant to the learner. Socioscientific issues (SSI) can provide a powerful avenue for promoting the desired kinds of engagement. SSI are debatable and ill-defined problems that have a basis in science but necessarily include moral and ethical choices. SSI for economically disadvantaged, culturally diverse students in urban settings might include, for example, lead paint contamination, poor water or air quality, or the existence of “food deserts.” By integrating locally relevant SSI with the goals of social justice, the Social Justice STEM Pedagogies (SJSP) framework the project uses is intended to support students to use their scientific expertise to be agents of change. SJSP can be potentially transformative for teachers, students, schools, and the communities in which students live. For SJSP to effectively promote STEM learning, however, teachers must learn how to integrate STEM-concepts and practices into the various real-world SSI present in their students’ environment. This collaborative project is designed to implement and evaluate a comprehensive professional development plan for grades 7 –12 STEM teachers from economically disadvantaged school districts in Philadelphia and surrounding areas. Teachers will develop ways to incorporate SSI into their instruction that are grounded in standards to foster students’ STEM engagement. The instructional practices enacted by teachers will enhance students’ STEM literacy while utilizing their own knowledge and culture in solving complex and ethically challenging STEM issues, thus promoting students’ abilities to be change agents.

This collaborative research project involves Arcadia University, Mercyhurst University, LaSalle University, Villanova University, and St. Joseph’s University. It is designed to investigate the effectiveness of a professional development (PD) program for STEM teachers to develop their pedagogical content knowledge (PCK) in teaching SSI and SJSP. Over four years, three cohorts of 25 grades 7-12 teachers will participate in about 200 hours of PD. The SSI and SJSP encompass authentic, complex real-world, STEM-based issues that are directly related to the inequities experienced by students and their communities that students can engage with in the classroom through the use of inquiry-based learning strategies. By promoting students’ engagement in and awareness of the relevance of STEM in everyday life, teacher participants in this PD will foster STEM learning, especially among students who have been historically marginalized from STEM disciplines, and who are from economically disadvantaged backgrounds. The research plan is designed to reveal elements of the PD program that are most effective in supporting teachers’ increased capacity to design and implement units of study that incorporate scientific, social, and discursive elements of SSI. Using predominantly qualitative methods, other outcomes include how teachers’ PCK change towards teaching with SSI/SJSP; what factors support and inhibit teacher’s abilities to promote SSI/SJSP; and how justice-centered STEM lessons help students to develop moral and ethical reasoning, scientific skepticism, STEM inquiry/modeling, and SSI discourse/argumentation.

Teacher Collaborative for Culturally Relevant Mathematics and Science Curricula

Culturally relevant pedagogy (CRP) is a framework that puts students and their experiences at the center of teaching. Culturally relevant math and science teaching (CRMST), more specifically, describes equitable science and math teaching practices that support student success in schools. This project involves elementary teachers in a 3-day conference focusing on CRP and CRMST. The conference is designed to form a teacher collaborative to share experiences and resources, learn from one another, and create their own culturally relevant science and math units for use in their classrooms.

Lead Organization(s): 
Award Number: 
2101532
Funding Period: 
Tue, 06/15/2021 to Tue, 05/31/2022
Full Description: 

To be effective, teachers need a strong theoretical understanding of the frameworks that support success for all students, especially those students historically underserved by schools. Culturally relevant pedagogy (CRP) is a framework that puts students and their experiences at the center of teaching. Culturally relevant math and science teaching (CRMST), more specifically, describes equitable science and math teaching practices that support student success in schools. This project involves elementary teachers in a 3-day conference focusing on CRP and CRMST. The conference is designed to form a teacher collaborative to share experiences and resources, learn from one another, and create their own culturally relevant science and math units for use in their classrooms. To boost teacher learning, the conference includes a variety of workshops and activities led by local and national content area experts, teacher educators, and STEM teacher-leaders who use culturally relevant science/math curricula in their classrooms. In the year following the conference, teachers will be strategically supported to continue designing and implementing CRMST through monthly teacher collaborative meetings and in-classroom support. At the end of the project year, teachers will participate in a public curriculum fair that showcases their projects and allows them to share what they have learned.

The research component of this project will use culturally relevant pedagogy and a framework that describes trajectories of development for CRMST as theoretical and analytical frameworks. In particular, the latter framework describes levels of engagement with key ideas from CRP and attends to, for example, whether teachers engage with transformative decision making, grapple with issues from an individual or structural perspective, and recognize tensions and discomfort in their learnings about CRMST. The research will focus on learning more about how teachers benefit from collaborative opportunities and how they develop understandings about CRMST.  Data sources will include: culturally relevant mathematics and science curricula (CR-MASC) units, classroom observations, field notes, and surveys collected from the teacher participants. Findings about practices and structures that support teachers’ movement towards CRMST, as well as exemplary CR-MASC units, will contribute to research and practice in teacher education aimed at improving science and math learning experiences for marginalized learners.

Facilitating Formative Feedback: Using Simulations to Impact the Capability of Novice Mathematics Teachers

This project explores the ways in which thoughtfully designed simulations can provide preservice teachers with formative assessment opportunities that serve as a complement to, or alternative to as needed, feedback derived from field placement contexts. A set of simulations will be designed with a focus on eliciting and interpreting student thinking. These simulations will be used with preservice teachers in three elementary teacher preparation programs of varying size and demographics.

Lead Organization(s): 
Award Number: 
2101343
Funding Period: 
Wed, 09/01/2021 to Sun, 08/31/2025
Full Description: 

During their initial teacher preparation experiences, preservice teachers need meaningful formative assessment that can support them in developing their skills and practices as new teachers of mathematics. While field placements offer some such opportunities, too often preservice teachers are not able to see, experience, and enact a full range of research-based effective mathematics teaching practices. This level II four-year design and development study in the assessment strand explores the ways in which thoughtfully designed simulations can provide preservice teachers with formative assessment opportunities that serve as a complement to, or alternative to as needed, feedback derived from field placement contexts. A set of simulations will be designed with a focus on eliciting and interpreting student thinking. These simulations will be used with preservice teachers in three elementary teacher preparation programs of varying size and demographics. Data will be collected to understand the ways in which the feedback from engaging in the simulations serves to strengthen preservice teachers' abilities to elicit and interpret student thinking through an analysis of performance in the simulations, interviews with preservice teachers, and feedback from teacher educators. An associated study will establish the reliability and validity of the simulations as assessment tools.

Simulations will be developed and tested in three cycles, with iterative improvements made between each cycle. The first cycle will involve 10 preservice teachers in a pilot study separate from participation in a course, in which preservice teachers engage in a simulation, receive formative feedback, and engage in a second similar simulation. This cycle will evaluate the extent to which feedback appears to influence subsequent performance. In the second cycle, the project will work with three teacher educators in diverse contexts to enact the simulations with all preservice teachers in one section of their elementary mathematics methods courses. In the final cycle, the use of the simulations will shift from a research team actor playing the role of the student to a site-based actor recruited by the teacher educators at each of the three institutions. To validate the tools, researcher reliability and teacher educator reliability studies will be conducted to asses the extent to which the four different simulation assessments provide consistent feedback on the targeted teaching practices and the extent to which the scoring of the assessments are reliable. A G study (generalizability study) will be conducted to evaluate the extent to which the teacher participant is the primary source of variation as compared to variations from student actors or the rater administering the assessment. Results will be disseminated in a variety of mathematics education settings and the simulation materials will be made available to practitioners and adapted for additional use in  mixed-reality simulation platforms.

Managing Uncertainty for Productive Struggle: Exploring Teacher Development for Managing Students' Epistemic Uncertainty as a Pedagogical Resource in Project-based Learning

This project is exploring teachers' capacity to manage student epistemic uncertainty as a pedagogical resource that supports student’s productive struggle and the development of conceptual knowledge during project-based learning instruction in middle school science classrooms.

Lead Organization(s): 
Award Number: 
2100879
Funding Period: 
Sun, 08/01/2021 to Wed, 07/31/2024
Full Description: 

The research team is exploring teachers' capacity to manage student epistemic uncertainty as a pedagogical resource that supports student’s productive struggle and the development of conceptual knowledge during project-based learning (PBL) instruction in middle school science classrooms. Although scientists consider uncertainty to be a primary driver of the progression of scientific knowledge and making sense of the world, the way science is typically taught in middle school obscures the productive role of uncertainty in science. Indeed, science is typically taught to emphasize its assuredness and authority instead. If teachers are going to shift their teaching practice to engage students with uncertainty in scientifically productive ways, the educational community needs this area to be researched. It is known that managing uncertainty in the classroom is a challenge for teachers and students. Many are not familiar with how scientists and engineers manage uncertainty to make sense of the real world, and few studies explore learning science as an enterprise of uncertainty management nor how student uncertainty is identified by teachers and students, advances discussion, contributes to knowledge development, gets resolved, and appropriately raises new uncertainties, and what strategies are available to teachers to manage students’ desirable uncertainty for productive struggle. This project is exploring how teachers' instructional practices change over time with repeated use of epistemic uncertainty as a pedagogical resource to support students’ engagement in PBL, and what effect those changes have on student perceptions, practice, management of epistemic uncertainty and learning outcomes. The project will result in the following outcomes: (1) an evidence-based model and learning materials for sustained PD that focuses on developing teacher capacity and practice while using targeted materials and approaches; (2) a productive teaching model for managing uncertainty that will promote a culture of scientific inquiry and engineering design as well as a set of strategies to foster student agency; and (3) evidence of increased student learning outcomes when teachers adapt students' epistemic uncertainty as a pedagogical resource to support students' productive struggle in STEM PBL.

Using a longitudinal, design-based research, mixed-methods study structure, the research team is investigating middle school science teachers' capacity to recognize, utilize, and manage students' epistemic uncertainty as a pedagogical resource for productive struggle. The study follows the same cohort of 24 sixth-grade teachers in Phoenix, Arizona, for three years beginning in fall 2021. Program activities are impacting approximately 1080 students’ learning outcomes over the life of the project. The following research questions guide the study: (1) How does sustained engagement with professional development in uncertainty management affect teachers' capacity to recognize and utilize students' epistemic uncertainty as a pedagogical resource for engaging students in productive struggle to develop scientific knowledge? (2) How do teachers' instructional practice in managing epistemic uncertainty change over time when they utilize epistemic uncertainty as a pedagogical resource for engaging students in productive struggle? (3) How do teachers' approach to managing uncertainty influence students' perceptions, practice, and management of epistemic uncertainty? Quantitatively, existing measures are being employed an two new instruments are being developed. Qualitatively, interviews and surveys round out the exploration of these questions. The results of this study are informing widely-adopted learning standards, and dissemination will help science teachers to recognize and use students’ epistemic uncertainty as a pedagogical resource to support their learning in science and engineering classrooms.

MothEd - Authentic Science for Elementary and Middle School Students

Widely-adopted science education standards have expanded expectations for students to learn science research processes. To address these needs, the project will research and develop curricular materials and classroom practices that teachers can use to bring authentic science into their classes and engage students as active science researchers. The project, called MothEd, will focus on the study of moths, which are well-suited to the project’s goal of having students conduct authentic scientific investigations.

Lead Organization(s): 
Award Number: 
2100990
Funding Period: 
Sun, 08/15/2021 to Thu, 07/31/2025
Full Description: 

There are few opportunities and curriculum materials that support teachers in engaging elementary and middle-school students in scientific research processes and in conducting their own investigations. Widely-adopted science education standards have expanded expectations for students to learn science research processes. To address these needs, the project will research and develop curricular materials and classroom practices that teachers can use to bring authentic science into their classes and engage students as active science researchers. The project, called MothEd, will focus on the study of moths, which are well-suited to the project’s goal of having students conduct authentic scientific investigations. Moths are ecologically important, easy to capture, and there is a lack of research on moths compared to many other insect species. In the project activities, students will construct moth traps and collect data through research processes that they design and carry out. The project is building on an approach called community science (sometimes called citizen science), where non-scientists in local communities voluntarily contribute to scientific research. Students and teachers will work in partnership with entomologists and science educators to develop and answer questions about local ecological conditions and will become genuine producers of knowledge within science learning communities. Students will work collaboratively within an online platform to design experiments using a complete suite of research tools for collection, expression, and analysis of data, including sensors, photographs, sketches, and graphs. The project will develop curricular materials that will provide teaching and learning materials that are focused on giving students place-based opportunities to conduct age-appropriate scientific investigations.

MothEd’s educational research will investigate several questions: (1) what students understand about scientific research processes and how they see themselves in that process; (2) how students can work as partners with scientists in discovery and what do they learn about research methods and moth ecology; and (3) What supports teachers need in order to support students as active science researchers. Using a mixed methods approach, the project will collect a variety of data for the research: in-class observations of student work; pre- and post- activity surveys about their knowledge of moth ecology and their view and understanding of science research processes; teacher interviews; and analysis of data collected by project software on student work and collaboration. The project will be designed to ensure that the MothEd education materials can be adopted and used independently by teachers across the country. Project research findings and materials will be shared via conferences, journal publications, and the project’s collaborative learning environment.

Using Natural Language Processing to Inform Science Instruction (Collaborative Research: Linn)

This project takes advantage of language to help students form their own ideas and pursue deeper understanding in the science classroom. The project will conduct a comprehensive research program to develop and test technology that will empower students to use their ideas as a starting point for deepening science understanding. Researchers will use a technology that detects student ideas that go beyond a student's general knowledge level to adapt to a student's cultural and linguistic understandings of a science topic.

Partner Organization(s): 
Award Number: 
2101669
Funding Period: 
Thu, 07/01/2021 to Mon, 06/30/2025
Full Description: 

Often, middle school science classes do not benefit from participation of underrepresented students because of language and cultural barriers. This project takes advantage of language to help students form their own ideas and pursue deeper understanding in the science classroom. This work continues a partnership among the University of California, Berkeley, Educational Testing Service, and science teachers and paraprofessionals from six middle schools enrolling students from diverse racial, ethnic, and language groups whose cultural experiences may be neglected in science instruction. The partnership will conduct a comprehensive research program to develop and test technology that will empower students to use their ideas as a starting point for deepening science understanding. Researchers will use a technology that detects student ideas that go beyond a student's general knowledge level to adapt to a student's cultural and linguistic understandings of a science topic. The partnership leverages a web-based platform to implement adaptive guidance designed by teachers that feature dialog and peer interaction. Further, the platform features teacher tools that can detect when a student needs additional help and alert the teacher. Teachers using the technology will be able to track and respond to individual student ideas, especially from students who would not often participate because of language and cultural barriers.

This project develops AI-based technology to help science teachers increase their impact on student science learning. The technology is aimed to provide accurate analysis of students' initial ideas and adaptive guidance that gets each student started on reconsidering their ideas and pursuing deeper understanding. Current methods in automated scoring primarily focus on detecting incorrect responses on test questions and estimating the overall knowledge level in a student explanation. This project leverages advances in natural language processing (NLP) to identify the specific ideas in student explanations for open-ended science questions. The investigators will conduct a comprehensive research program that pairs new NLP-based AI methods for analyzing student ideas with adaptive guidance that, in combination, will empower students to use their ideas as starting points for improving science understanding. To evaluate the idea detection process, the researchers will conduct studies that investigate the accuracy and impact of idea detection in classrooms. To evaluate the guidance, the researchers will conduct comparison studies that randomly assign students to conditions to identify the most promising adaptive guidance designs for detected ideas. All materials are customizable using open platform authoring tools.

Using Natural Language Processing to Inform Science Instruction (Collaborative Research: Riordan)

This project takes advantage of language to help students form their own ideas and pursue deeper understanding in the science classroom. The project will conduct a comprehensive research program to develop and test technology that will empower students to use their ideas as a starting point for deepening science understanding. Researchers will use a technology that detects student ideas that go beyond a student's general knowledge level to adapt to a student's cultural and linguistic understandings of a science topic.

Lead Organization(s): 
Award Number: 
2101670
Funding Period: 
Thu, 07/01/2021 to Mon, 06/30/2025
Full Description: 

Often, middle school science classes do not benefit from participation of underrepresented students because of language and cultural barriers. This project takes advantage of language to help students form their own ideas and pursue deeper understanding in the science classroom. This work continues a partnership among the University of California, Berkeley, Educational Testing Service, and science teachers and paraprofessionals from six middle schools enrolling students from diverse racial, ethnic, and language groups whose cultural experiences may be neglected in science instruction. The partnership will conduct a comprehensive research program to develop and test technology that will empower students to use their ideas as a starting point for deepening science understanding. Researchers will use a technology that detects student ideas that go beyond a student's general knowledge level to adapt to a student's cultural and linguistic understandings of a science topic. The partnership leverages a web-based platform to implement adaptive guidance designed by teachers that feature dialog and peer interaction. Further, the platform features teacher tools that can detect when a student needs additional help and alert the teacher. Teachers using the technology will be able to track and respond to individual student ideas, especially from students who would not often participate because of language and cultural barriers.

This project develops AI-based technology to help science teachers increase their impact on student science learning. The technology is aimed to provide accurate analysis of students' initial ideas and adaptive guidance that gets each student started on reconsidering their ideas and pursuing deeper understanding. Current methods in automated scoring primarily focus on detecting incorrect responses on test questions and estimating the overall knowledge level in a student explanation. This project leverages advances in natural language processing (NLP) to identify the specific ideas in student explanations for open-ended science questions. The investigators will conduct a comprehensive research program that pairs new NLP-based AI methods for analyzing student ideas with adaptive guidance that, in combination, will empower students to use their ideas as starting points for improving science understanding. To evaluate the idea detection process, the researchers will conduct studies that investigate the accuracy and impact of idea detection in classrooms. To evaluate the guidance, the researchers will conduct comparison studies that randomly assign students to conditions to identify the most promising adaptive guidance designs for detected ideas. All materials are customizable using open platform authoring tools.

Pages

Subscribe to Instructional Practice