Equity

An Innovative Approach to Earth Science Teacher Preparation: Uniting Science, Informal Science Education, and Schools to Raise Student Achievement

The American Museum of Natural History in New York City, in partnership with New York University, and in collaboration with five high-needs schools, is developing, implementing, and researching a five-year pilot Master of Arts in Teaching (MAT) program in Earth Science. The program is delivered by the Museum's scientific and education teams and its evaluation covers aspects of the program from recruitment to first year of teaching.

Project Email: 
Award Number: 
1119444
Funding Period: 
Thu, 09/01/2011 to Thu, 08/31/2017
Project Evaluator: 
David Silvernail, Center for Education and Policy, University of Southern Maine
Full Description: 

The American Museum of Natural History (AMNH), in collaboration with New York University's Institute for Education and Social Policy and the University of Southern Maine Center for Evaluation and Policy, will develop and evaluate a new teacher education program model to prepare science teachers through a partnership between a world class science museum and high need schools in metropolitan New York City (NYC). This innovative pilot residency model was approved by the New York State (NYS) Board of Regents as part of the state’s Race To The Top award. The program will prepare a total of 50 candidates in two cohorts (2012 and 2013) to earn a Board of Regents-awarded Masters of Arts in Teaching (MAT) degree with a specialization in Earth Science for grades 7-12. The program focuses on Earth Science both because it is one of the greatest areas of science teacher shortages in urban areas and because AMNH has the ability to leverage the required scientific and educational resources in Earth Science and allied disciplines, including paleontology and astrophysics.

The proposed 15-month, 36-credit residency program is followed by two additional years of mentoring for new teachers. In addition to a full academic year of residency in high-needs public schools, teacher candidates will undertake two AMNH-based clinical summer residencies; a Museum Teaching Residency prior to entering their host schools, and a Museum Science Residency prior to entering the teaching profession. All courses will be taught by teams of doctoral-level educators and scientists.

The project’s research and evaluation components will examine the factors and outcomes of a program offered through a science museum working with the formal teacher preparation system in high need schools. Formative and summative evaluations will document all aspects of the program. In light of the NYS requirement that the pilot program be implemented in high-need, low-performing schools, this project has the potential to engage, motivate and improve the Earth Science achievement and interest in STEM careers of thousands of students from traditionally underrepresented populations including English language learners, special education students, and racial minority groups. In addition, this project will gather meaningful data on the role science museums can play in preparing well-qualified Earth Science teachers. The research component will examine the impact of this new teacher preparation model on student achievement in metropolitan NYC schools. More specifically, this project asks, "How do Earth Science students taught by first year AMNH MAT Earth Science teachers perform academically in comparison with students taught by first year Earth Science teachers not prepared in the AMNH program?.”

Multiple Instrumental Case Studies of Inclusive STEM-Focused High Schools: Opportunity Structures for Preparation and Inspiration (OSPrl)

The aim of this project is to examine opportunity structures provided to students by inclusive STEM-focused high schools, with an emphasis on studying schools that serve students from underrepresented groups. The project is studying inclusive STEM-focused high schools across the United States to determine what defines them. The research team initially identified ten candidate critical components that define STEM-focused high schools and is refining and further clarifying the critical components through the research study.

Lead Organization(s): 
Award Number: 
1118851
Funding Period: 
Thu, 09/01/2011 to Mon, 08/31/2015
Full Description: 

The aim of this project is to examine opportunity structures provided to students by inclusive STEM-focused high schools, with an emphasis on studying schools that serve students from underrepresented groups. In contrast to highly selective STEM-focused schools that target students who are already identified as gifted and talented in STEM, inclusive STEM-focused high schools aim to develop new sources of STEM talent, particularly among underrepresented minority students, to improve workforce development and prepare STEM professionals. A new NRC report, Successful K-12 STEM Education (2011), identifies areas in which research on STEM-focused schools is most needed. The NRC report points out the importance of providing opportunities for groups that are underrepresented in the sciences, especially Blacks, Hispanics, and low-income students who disproportionately fall out of the high-achieving group in K-12 education. This project responds specifically to the call for research in the NRC report and provides systematic data to define and clarify the nature of such schools. 

The project is studying inclusive STEM-focused high schools across the United States to determine what defines them. The research team initially identified ten candidate critical components that define STEM-focused high schools and is refining and further clarifying the critical components through the research study. The first phase of the study is focusing on 12 well-established and carefully planned schools with good reputations and strong community and business support, in order to capture the critical components as intended and implemented. Case studies of these high-functioning schools and a cross-case analysis using a set of instruments for gauging STEM design and implementation are contributing toward building a theory of action for such schools that can be applied more generally to STEM education. The second phase of the study involves selecting four school models for further study, focusing on student-level experiences and comparing student outcomes against comprehensive schools in the same district. Research questions being studied include: 1) Is there a core set of likely critical components shared by well-established, promising inclusive STEM-focused high schools? Do other components emerge from the study? 2) How are the critical components implemented in each school? 3) What are the contextual affordances and constraints that influence schools' designs, their implementation, and student outcomes? 4) How do student STEM outcomes in these schools compare with school district and state averages? 5) How do four promising such schools compare with matched comprehensive high schools within their respective school districts, and how are the critical components displayed? 6) From the points of view of students underrepresented in STEM fields, how do education experiences at the schools and their matched counterparts compare? And 7) How do student outcomes compare?

The research uses a multiple instrumental case study design in order to describe and compare similar phenomena. Schools as critical cases are being selected through a nomination process by experts, followed by screening and categorization according to key design dimensions. Data sources include school documents and public database information; a survey, followed by telephone interviews that probe for elaborated information, to provide a systematic overview of the candidate components; on-site visitations to each school provide data on classroom observations at the schools; interviews with students, teachers and administrators in focus groups; and discussions with critical members of the school community that provide unique opportunities to learn such as mentors, business leaders, and members of higher education community that provide outside of school learning experiences. The project is also gathering data on a variety of school-level student outcome indicators, and is tracking the likely STEM course trajectories for students, graduation rates, and college admission rates for students in the inclusive STEM-focused schools, as compared to other schools in the same jurisdiction. Analysis of the first phase of the study aims to develop rich descriptions that showcase characteristics of the schools, using axial and open coding, to determine a theory of action that illustrates interconnections among context, design, implementation, and outcome elements. Analysis of the second phase of the study involves similar processes on four levels: school, student, databases, and a synthesis of the three. Evaluation of the project consists of an internal advisory board and an external advisory board, both of which provide primarily formative feedback on research procedures.

Research findings, as well as case studies, records of instrument and rubric development and use, annual reports, and conference proposals and papers are being provided on a website, in order to provide an immediate and ongoing resource for education leaders, researchers and policymakers to learn about research on these schools and particular models. An effort is also being made to give voice to the experiences of high school students from the four pairs of high schools studied in the second phase of the study. Findings are also being disseminated by more traditional means, such as papers in peer-reviewed journals and conference presentations.

Promoting Science Among English Language Learners (P-SELL) Scale-Up

This effectiveness study focuses on the scale-up of a model of curricular and teacher professional development intervention aimed at improving science achievement of all students, especially English language learners (ELLs). The model consists of three basic components: (a) inquiry-oriented science curriculum, (b) teacher professional development for science instruction with these students, and (c) school resources for science instruction.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1209309
Funding Period: 
Mon, 08/15/2011 to Fri, 07/31/2015
Project Evaluator: 
Lauren Scher
Full Description: 

This four-year effectiveness study focuses on the scale-up of a model of curricular and teacher professional development intervention aimed at improving science achievement of all students, especially English language learners (ELLs). The model consists of three basic components: (a) inquiry-oriented science curriculum, (b) teacher professional development for science instruction with these students, and (c) school resources for science instruction. The project's main goals are: (1) to evaluate the effect of the intervention on student achievement, (2) to determine the effect of the intervention on teacher knowledge, practices, and school resources, and (3) to assess how teacher knowledge, practices, and resources mediate student achievement. The project is conducted in the context of the Florida current science education policies and accountability system (e.g., adoption of the Next Generation Sunshine State Standards in Science, assessment of science at the fifth grade, a Race to the Top award state). The study draws on findings from research on a previous NSF-funded efficacy study (035331) in which the model to be scaled-up was tested in a single school district. The effectiveness study includes three (of 67) school districts as key partners, representative of racially, ethnically, linguistically, and socioeconomically diverse student populations; 64 elementary schools, 320 science teachers, and 24,000 fifth-grade students over a three-year period. Science learning is the primary subject matter, inclusive of life, physical, and earth/space sciences. Six research questions corresponding to three research areas guide the proposed scope of work. For the research area of Student Science Achievement, questions are: (1) What is the effect of the intervention on fifth-grade students' science achievement, compared to "business as usual"?, and (2) To what extent are the effects of the intervention moderated by students' English as a Second Language (ESOL) level, SES status, and racial/ethnic backgrounds? For Teacher Knowledge and Practices as a research area, questions are: (3) What is the effect of the intervention on teachers' science knowledge and teaching practices?, and (4) To what extent is students' science achievement predicted by school resources for science instruction? For School Resources for Science, questions are: (5) What is the effect of the intervention on school resources for science instruction?, and (6) To what extent is student achievement predicted by school resources for science instruction? To assess the effect of the intervention on students' and teachers' outcomes, a cluster-randomized-control trial is used, resulting in a total of 64 randomly selected schools (after stratifying them by school-level percent of ESOL and Free Reduced Lunch students). All science teachers and students from the 64 schools participate in the project: 32 in the treatment group (project curriculum for fifth grade, teacher professional development, and instructional resources), and 32 in the control group (district-adopted fifth-grade curriculum, no teacher professional development, and no instructional resources). To address the research area of Student Science Achievement, formative assessment items are used at the end of each curriculum unit, along with two equated forms of a project-developed science test (to be used as pre-and posttests) with both treatment and control groups, in addition to the Florida's Comprehensive Assessment Tests-Science. Data interpretation for this research area employs a set of three-level HLMs (students, nested in classrooms, nested in schools). To address the research area of Teacher Knowledge and Practices and School Resources for Science, the project uses three measures: (a) two equated forms of a 35-items test of teacher science knowledge, (b) a classroom observation instrument measuring third-party ratings of teacher knowledge and teaching practices, and (c) a questionnaire measuring teachers' self-reports of science knowledge and teaching practices. All measures are administered to both treatment and control groups. Data interpretation strategies include a series of HLMs with emphasis on the relevant teacher outcomes as a function of time, and of school-level mediating variables. External project evaluation is conducted by Concentric Research and Evaluation using quantitative and qualitative methods and addressing both formative and summative components. Project research findings contribute to the refinement of a model reflective of the new science standards in the State and the emerging national science standards. The value added of this effort consists of its potential to inform effective implementation of science curricula and teacher professional development in other learning settings, including ELLs and traditionally marginalized student populations at the elementary school level. It constitutes practically the only research study focused on the issue of scale-up and sustainability of effective science education practices with this student subpopulation, which has become prominent due to the dramatic growth of a racially, ethnically, and linguistically diverse school-aged population, low levels of U.S. student science achievement, and the role of science and mathematics in current accountability systems nationwide.

School Structure and Science Success: Organization and Leadership Influences on Student Achievement (Collaborative Research: Butler)

This project will document factors explaining variations in science achievement across schools enrolling ethnically and linguistically diverse students. The research question is: what leadership and organizational features at the school level are associated with mitigating science achievement gaps? Researchers, in collaboration with school districts, will identify school leadership practices that can be connected with reductions in achievement gaps related to student ethnicity, English fluency, and social status.

Partner Organization(s): 
Award Number: 
1338512
Funding Period: 
Fri, 02/15/2013 to Sat, 06/30/2018
Full Description: 

The School Organization and Science Achievement (SOSA) Project will document factors explaining variations in science achievement across schools enrolling ethnically and linguistically diverse students. The research question is: what leadership and organizational features at the school level are associated with mitigating science achievement gaps? Previous school effectiveness studies demonstrate school leadership and social capital influencing student achievement; the SOSA project is unique with its focus on science achievement. Researchers at the University of Connecticut and the University of South Florida St. Petersburg, in collaboration with school districts in their respective states, will identify school leadership practices that can be connected with reductions in achievement gaps related to student ethnicity, English fluency, and social status. At the conclusion of the five-year project, the findings will take the form of recommendations about leadership practices and school organization that can be implemented in other school settings.

The project uses a mixed methods design by combining statistical modeling and qualitative data. Multiple regression analyses highlight those schools populated by fifth graders that have greater or lesser achievement gaps in science. Using social capital theory (i.e., school norms, communication channels, and trustworthiness) comparisons of positive and negative outlier schools will be made via interviews of building principals, classroom teachers and community representatives. The expectation is that schools providing more equitable science experiences to all students will exhibit stronger social capital compared to buildings with disparities in science test scores across demographic categories. These insights will be supplemented by multilevel structural equation modeling to determine the strength of association between various school climate measures (e.g., teacher-to-principal trust, correspondence between teacher and principal perceptions of leadership, and school/community ties) and science achievement as measured by statewide fifth grade science tests. In addition, growth analyses will be used to detect shifts over time and provide insights about the links between policy changes or leadership adjustments, inasmuch as science achievement gaps are affected.

By working with 150 schools in two states, this collaborative research project is designed to generate findings applicable in other school systems. Particularly in settings where science achievement gaps are large, and especially when such gaps vary between schools even when the student populations are similar, the findings from this study will have practical leadership implications. Expertise in this project includes science education, educational leadership, and statistical modeling. This complementary combination increases the depth of the project's efforts along with expanding its potential impacts. Key questions addressed by this project include: to what extent is leadership in science similar to or different from leadership in other subject areas? how do variations in leadership design (e.g., top-down versus distributed leadership) contribute to reductions in science achievement gaps? to what degree can effective leadership mitigate other factors that exacerbate the challenges of providing high quality science learning experiences for every child? Findings will be disseminated via the SOSA Project website, along with leadership development strategies. Deliverables include templates to replicate the study, case studies for professional development, and strategies for supporting the development of science teacher-leaders.

This project was previously funded under award # 1119359.

Continuous Learning and Automated Scoring in Science (CLASS)

This five-year project investigates how to provide continuous assessment and feedback to guide students' understanding during science inquiry-learning experiences, as well as detailed guidance to teachers and administrators through a technology-enhanced system. The assessment system integrates validated automated scorings for students' written responses to open-ended assessment items into the "Web-based Inquiry Science Environment" (WISE) program.

Award Number: 
1119670
Funding Period: 
Thu, 09/01/2011 to Mon, 08/31/2015
Full Description: 

This five-year project investigates how to provide continuous assessment and feedback to guide students' understanding during science inquiry-learning experiences, as well as detailed guidance to teachers and administrators through a technology-enhanced system. The assessment system integrates validated automated scorings for students' written responses to open-ended assessment items (i.e., short essays, science narratives, concept mapping, graphing problems, and virtual experiments) into the "Web-based Inquiry Science Environment" (WISE) program. WISE is an online science-inquiry curricula that supports deep understanding through visualization of processes not directly observable, virtual experiments, graphing results, collaboration, and response to prompts for explanations. In partnership with Educational Testing Services (ETS), project goals are: (1) to develop five automated inquiry assessment activities that capture students' abilities to integrate their ideas and form coherent scientific arguments; (2) to customize WISE by incorporating automated scores; (3) to investigate how students' systematic feedback based on these scores improve their learning outcomes; and (4) to design professional development resources to help teachers use scores to improve classroom instruction, and administrators to make better informed decisions about teacher professional development and inquiry instruction. The project targets general science (life, physical, and earth) in three northern California school districts, five middle schools serving over 4,000 6th-8th grade students with diverse cultural and linguistic backgrounds, and 29 science teachers. It contributes to increase opportunities for students to improve their science achievement, and for teachers and administrators to make efficient, evidence-based decisions about high-quality teaching and learning.

A key research question guides this effort: How automated scoring of inquiry assessments can increase success for diverse students, improve teachers' instructional practices, and inform administrators' decisions about professional development, inquiry instruction, and assessment? To develop science inquiry assessment activities, scoring written responses include semantic, syntax, and structure of meaning analyses, as well as calibration of human-scored items with a computer-scoring system through the c-rater--an ETS-developed cyber learning technology. Validity studies are conducted to compare automated scores with human-scored items, teacher, district, and state scores, including sensitivity to the diverse student population. To customize the WISE curriculum, the project modifies 12 existing units and develops nine new modules. To design adaptive feedback to students, comparative studies explore options for adaptive guidance and test alternatives based on automated scores employing linear models to compare student performance across randomly assigned guidance conditions; controlling for covariates, such as prior science scores, gender, and language; and grouping comparison studies. To design teacher professional development, synthesis reports on auto-scored data are created to enable them to use evidence to guide curricular decisions, and comments' analysis to improve feedback quality. Workshops, classroom observations, and interviews are conducted to measure longitudinal teachers' change over time. To empower administrators' decision making, special data reports, using-evidence activities, individual interviews, and observation of administrators' meetings are conducted. An advisory board charged with project evaluation addresses both formative and summative aspects.

A research-informed model to improve science teaching and learning at the middle school level through cyber-enabled assessment is the main outcome of this effort. A total of 21 new, one- to three-week duration standards-based science units, each with four or more automatically scored items, serve as prototypes to improve students' performance, teachers' instructional approaches, and administrators' school policies and practices.

School Organization and Science Achievement: Organization and Leadership Influences on Equitable Student Performance (Collaborative Research: Settlage)

This project will document factors explaining variations in science achievement across schools enrolling ethnically and linguistically diverse students. The research question is: what leadership and organizational features at the school level are associated with mitigating science achievement gaps? At the conclusion of the five-year project, the findings will take the form of recommendations about leadership practices and school organization that can be implemented in other school settings.

Award Number: 
1119349
Funding Period: 
Fri, 07/01/2011 to Sun, 06/30/2013
Project Evaluator: 
Katherine Paget, Education Development Center, Inc. (EDC)
Full Description: 

The School Organization and Science Achievement (SOSA) Project will document factors explaining variations in science achievement across schools enrolling ethnically and linguistically diverse students. The research question is: what leadership and organizational features at the school level are associated with mitigating science achievement gaps? Previous school effectiveness studies demonstrate school leadership and social capital influencing student achievement; the SOSA project is unique with its focus on science achievement. Researchers at the University of Connecticut and the University of South Florida St. Petersburg, in collaboration with school districts in their respective states, will identify school leadership practices that can be connected with reductions in achievement gaps related to student ethnicity, English fluency, and social status. At the conclusion of the five-year project, the findings will take the form of recommendations about leadership practices and school organization that can be implemented in other school settings.

The project uses a mixed methods design by combining statistical modeling and qualitative data. Multiple regression analyses highlight those schools populated by fifth graders that have greater or lesser achievement gaps in science. Using social capital theory (i.e., school norms, communication channels, and trustworthiness) comparisons of positive and negative outlier schools will be made via interviews of building principals, classroom teachers and community representatives. The expectation is that schools providing more equitable science experiences to all students will exhibit stronger social capital compared to buildings with disparities in science test scores across demographic categories. These insights will be supplemented by multilevel structural equation modeling to determine the strength of association between various school climate measures (e.g., teacher-to-principal trust, correspondence between teacher and principal perceptions of leadership, and school/community ties) and science achievement as measured by statewide fifth grade science tests. In addition, growth analyses will be used to detect shifts over time and provide insights about the links between policy changes or leadership adjustments, inasmuch as science achievement gaps are affected.

By working with 150 schools in two states, this collaborative research project is designed to generate findings applicable in other school systems. Particularly in settings where science achievement gaps are large, and especially when such gaps vary between schools even when the student populations are similar, the findings from this study will have practical leadership implications. Expertise in this project includes science education, educational leadership, and statistical modeling. This complementary combination increases the depth of the project's efforts along with expanding its potential impacts. Key questions addressed by this project include: to what extent is leadership in science similar to or different from leadership in other subject areas? how do variations in leadership design (e.g., top-down versus distributed leadership) contribute to reductions in science achievement gaps? to what degree can effective leadership mitigate other factors that exacerbate the challenges of providing high quality science learning experiences for every child? Findings will be disseminated via the SOSA Project website, along with leadership development strategies. Deliverables include templates to replicate the study, case studies for professional development, and strategies for supporting the development of science teacher-leaders.

Investigating and Supporting the Development of Ambitious and Equitable Mathematics Instruction at Scale

This project is supporting and investigating the implementation of reformed mathematics instruction at the middle school level in two large school districts. The primary goal of the project is to develop an empirically grounded theory of action for implementing reform at school and district levels. The researchers are investigating reform within a coherent system that focuses on leadership and school-based professional development.

 

Lead Organization(s): 
Award Number: 
1119122
Funding Period: 
Mon, 08/15/2011 to Tue, 07/31/2012
Full Description: 

The Development of Ambitious and Equitable Mathematics Instruction project is supporting and investigating the implementation of reformed mathematics instruction at the middle school level in two large school districts. Project researchers are asking: What does it take to support mathematics teachers' development of ambitious and equitable instructional practices on a large scale? The project has built on what was learned in a previous, successful project studying the implementation of a middle school mathematics curriculum. The primary goal of the new project is to develop an empirically grounded theory of action for implementing reform at school and district levels. The researchers are investigating reform within a coherent system that focuses on leadership and school-based professional development. In addition, they are facilitating a longitudinal study of the curriculum implementation by continuing the data collection from the original study.

In order to build a theory of action, the project team is synthesizing data from a variety of domains including instructional systems (e.g., curriculum, materials, professional development, support for struggling students, and learning communities), mathematics coaching, networks of teachers, school leadership, and district leadership. Investigators are using a variety of analytic techniques to successfully integrate both quantitative and qualitative data as they seek to understand how school district strategies are playing out in schools and classrooms and how those strategies can be revised in order to improve student learning of mathematics.

An empirically grounded theory of action for implementing reform will help the mathematics education community to implement and to understand the process of reforming mathematics instruction at the middle school level. Many advances in mathematics instruction have been documented within a limited context, but researchers and practitioners need to understand the full range of action necessary to achieve similar successes at a district-wide level. The model developed from this project, in conjunction with longitudinal data, has the potential to guide future reform efforts that seek to provide ambitious and equitable mathematics instruction.

Teachers Empowered to Advance Change in Mathematics (TEACH MATH): Preparing Pre K-8 Teachers to Connect Children's Mathematical Thinking and Community-Based Funds of Knowledge

This project will modify the teacher preparation program for preK-8 teachers. The program is designed to help pre-service teachers learn mathematics well, learn to access students' cultural funds of knowledge, and learn to encourage students' mathematical thinking. The developers are designing (a) modules that can be used in teacher preparation courses, (b) a mentoring program for new teachers, and (c) on-line networks to facilitate collaboration among participating teachers and institutions.

Lead Organization(s): 
Award Number: 
1228034
Funding Period: 
Thu, 09/01/2011 to Thu, 08/31/2017
Project Evaluator: 
Research Institute for Studies in Education
Full Description: 

This research and development project will modify the teacher preparation program for preK-8 teachers at six universities located in different regions of the U.S. The new program is designed to help pre-service teachers learn mathematics well, learn to access students' cultural funds of knowledge in ways that will help them teach mathematics, and learn to encourage students' mathematical thinking. By integrating these important bodies of knowledge, pre-service teachers should be better prepared to teach mathematics to the variety of students in their classes. The developers are designing (a) modules that can be used in teacher preparation courses, (b) a mentoring program for new teachers, and (c) on-line networks to facilitate collaboration among participating teachers and institutions.

The project includes a study of how pre-service teachers learn to apply the knowledge they have gained in the program. The research team has planned a longitudinal collection of data that will track the pre-service teachers into their careers. Their goal is to document teachers' understandings of children's mathematical thinking and children's cultural funds of knowledge and to understand the relationship between teachers' understandings and the learning and disposition of preK-8 students. The study will be implemented at all six universities with staggered start dates allowing for analysis and revisions between cohorts.

These research and development efforts have the potential to impact preK-8 teacher preparation through (1) the development of modules that integrate several relevant proficiencies in mathematics teaching, and (2) the research that studies the impact of such a program on the mathematical learning and disposition of preK-8 students.

Professional Development for Culturally Relevant Teaching and Learning in Pre-K Mathematics

This project is creating and studying a professional development model to support preK teachers in developing culturally and developmentally appropriate practices in counting and early number. The proposed model is targeted at teachers of children in four-year-old kindergarten, and focuses on culturally relevant teaching and learning. The model stresses counting and basic number operations with the intention of exploring the domain as it connects to children's experiences in their homes and communities.

Award Number: 
1019431
Funding Period: 
Wed, 09/01/2010 to Fri, 08/31/2018
Project Evaluator: 
Victoria Jacobs
Full Description: 

Developers and researchers at the University of Wisconsin are creating and studying a professional development model that connects research in counting and early number (CGI), early childhood, and funds of knowledge. The proposed model is targeted at teachers of children in four-year-old kindergarten, and focuses on culturally relevant teaching and learning. The model stresses a specific, circumscribed content domain - counting and basic number operations - with the intention of exploring the domain in depth particularly as it connects to children's experiences in their homes and communities and how it is learned and taught through play.

The project designs, develops, and tests innovative resources and models for teachers to support ongoing professional learning communities. These learning communities are designed to identify and build on the rich mathematical understandings of all pre-K children. The project's specific goals are to instantiate a reciprocal "funds of knowledge" framework for (a) accessing children's out-of-school experiences in order to provide instruction that is equitable and culturally relevant and (b) developing culturally effective ways to support families in understanding how to mathematize their children's out-of-school activities. Teachers are observed weekly during the development and evaluation process and student assessments are used to measure students' progress toward meeting project benchmarks and the program's effectiveness in reducing or eliminating the achievement gap.

The outcome is a complete professional development model that includes written and digital materials. The product includes case studies, classroom video, examples of student work, and strategies for responding to students' understandings.

Language-Rich Inquiry Science with English Language Learners (LISELL)

This exploratory study develops and pilot-tests a model for improving science teaching and learning with middle school ELLs. Study goals include: (1) clarifying pedagogical constructs of language-rich science inquiry and the academic language of science and their relationships across the learning contexts of middle school science classrooms, teacher professional development and family science workshops, (2) developing and refining instruments to study these constructs in context, and (3) conducting pilot tests of the model and instruments.

Award Number: 
1019236
Funding Period: 
Sun, 08/15/2010 to Wed, 07/31/2013
Full Description: 

This exploratory study develops, pilot-tests, and refines a model for improving middle school English Language Learners' (ELLs) science learning. The model incorporates two pedagogical constructs (language-rich science inquiry and academic language development); and three learning settings (teacher professional development workshops, middle school science classrooms, and parent-student-teacher science workshops). The specific objectives of the study are: (1) to clarify the two pedagogical constructs and their relationships across the three learning contexts, (2) to develop and refine instruments that will be useful for the study of these constructs in these learning contexts, and (3) to conduct pilot tests of the model and instruments.

The study's development phase consists of the production, adaptation, and pilot testing of instructional strategies for teachers and learning materials for students. Instructional strategies for teachers are centered on three key inquiry practices: (a) coordinating theory and evidence, (b) controlling variables, and (c) cause and effect reasoning across 6th grade earth science, 7th grade life science, and 8th grade physical science. Learning materials for students consist of lessons in a workbook with units highlighting the study of academic language. Also, this phase of the study includes the development of resources to support parents' participation and measurement instruments to gather data during the research phase of the study.

The research phase of the study consists of pilot testing of the model. Two research questions guide the study: (1 What is the value for ELL students, their teachers and their parents of an instructional model that highlights language-rich science inquiry practices and academic language development strategies?; and (2)What is the value for ELL students, their teachers and their parents of an instructional model that is enacted in the contexts of middle school science classrooms, student-parent-teacher science workshops, and teacher professional development workshops? Assuming a quasi-experimental, pretest-posttest design, a power analysis defined a sample size of 1,000 middle school students (800 for the treatment group, and 200 for the control group) in 40 classrooms of three middle schools in the state of Georgia. A total of 12 teachers (8 science teachers and 2 English for Students of Other Languages teachers) were selected using a targeted strategy; and 40 randomly selected parents constitute the remaining population sample. The intervention consists of the use of teacher instructional strategies focused on exploring and elaborating cause-effect relationships, differentiating between evidence and theory, and identifying and controlling variables; students' use of instructional materials on academic language; and exploration of parents' science funds of knowledge. Data gathering strategies employ five instruments: (a) a teacher-focus-group interview protocol, (b) a teacher observation protocol, (c) a parent-student interview protocol, (d) a student academic language writing test, and (e) a student-constructed-response science inquiry test. Data interpretation strategies include qualitative analysis using narrative and semantic structure analysis and statistical analyses. An advisory board and an evaluator conduct the evaluation component of the study, inclusive of formative and summative aspects.

The outcome of this study is a research-informed and field-tested science instructional model focused on the improved learning of ELLs and a set of valid and reliable measuring instruments.

Pages

Subscribe to Equity