Equity

Centers for Learning and Teaching: Research to Identify Changes in Mathematics Education Doctoral Preparation and the Production of New Doctorates

This project will research the programmatic changes that resulted from the NSF investment in Centers for Learning and Teaching of Mathematics (CLT) at the 31 participating institutions. It will provide information on the core elements of doctoral preparation in mathematics education at the institutions and ways in which participation in the CLTs has changed their programs.

Lead Organization(s): 
Award Number: 
1434442
Funding Period: 
Fri, 08/01/2014 to Tue, 07/31/2018
Full Description: 

The quality of the mathematical education provided to teachers and ultimately to their students depends on the quality of teacher educators at the colleges and universities. For several decades, there has been a shortage of well-prepared mathematics teacher educators. Doctoral programs in mathematics education are the primary ways that these teacher educators learn the content and methods that they need to prepare teachers, but the quality of these programs varies and the number of qualified graduates has been insufficient to meet the demand.

This project will research the programmatic changes that resulted from the NSF investment in Centers for Learning and Teaching of Mathematics (CLT) at the 31 participating institutions. It will provide information on the core elements of doctoral preparation in mathematics education at the institutions and ways in which participation in the CLTs has changed their programs. It will also gather data on the number of doctorates in mathematics education from the CLT institutions prior to the establishment of the CLT and after their CLT ended. A comparison group of Doctoral granting institutions will be studied over the same time frame to determine the number of doctoral students graduated during similar time frames as the CLTs. Follow-up data from graduates of the CLTs will be gathered to identify programmatic strengths and weaknesses as graduates will be asked to reflect on how their doctoral preparation aligned with their current career path. The research questions are: What were the effects of CLTs on the production of new doctorates in mathematics education? What changes were made to doctoral programs in mathematics education by the CLT institutions? How well prepared were the CLT graduates for various career paths?

Access, Agency, and Allies in Mathematical Systems (A3IMS)

This project involves designing, facilitating, and studying professional development (PD) to support equitable mathematics education. The PD will involve grades 4-8 mathematics teachers across three sites to support the design of a two-week institute focused on enhancing access and agency in relationship to important math practices, followed by ongoing interactions for the math teachers to engage in systematic inquiry of their practice over time to facilitate equitable mathematics teaching and learning in their classrooms.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1417672
Funding Period: 
Mon, 09/01/2014 to Fri, 08/31/2018
Full Description: 

Given the role that mathematics plays as a gateway into STEM disciplines, addressing achievement gaps for underrepresented students is essential. By focusing on both equity and access, the project, funded in the Discovery Research K-12 program, seeks to improve students' opportunities to learn by focusing on helping middle grades teachers learn about and enact equitable mathematics instruction and encourage students to have agency in their own mathematics learning. The middle grades are a particularly important focus of the project, as this is a time in students' education when achievement gaps grow. The practice-based model of professional development focuses on creating systemic reforms through collaborative communities in which mathematics teacher educators, mathematics teachers, and students work together both to support the fair distribution of opportunities to learn and to empower each in their roles in supporting mathematics learning of all students. The project has promise for supporting students, teachers, and teacher educators who work with middle grades mathematics teachers with the potential to address mathematics achievement gaps of students via a focus on equitable mathematics teaching and learning.

This project involves designing, facilitating, and studying professional development (PD) to support equitable mathematics education. The PD will involve grades 4-8 mathematics teachers across three sites to support the design of a two-week institute focused on enhancing access and agency in relationship to important mathematical practices like argumentation and justification, followed by ongoing interactions for the mathematics teachers to engage in systematic inquiry of their practice over time to facilitate equitable mathematics teaching and learning in their classrooms. Field testing of the practice-based professional development in one urban district which will include research conducted on the nature of students', teachers', and teacher educators' opportunities to learn with respect to three features of an equitable mathematical system and from the perspective of three components of the system. The project studies the coherence and alignment of these components from the perspective of classroom mathematics teachers. The research addresses essential questions related to how to provide equitable opportunity to learn for students, teachers, and teacher educators. In particular it will generate models of PD, tools for assessing equity in mathematics teaching and learning, and a theory of equitable mathematics education systems that advances our understanding of the ways in which approaches to teaching, learning, and studying mathematics support equitable opportunities to learn.

 

A Study Group on Diversity, Equity and Excellence in Achievement and Assessment in Science, Technology, Engineering and Mathematics Education

This project seeks to find ways to make the measurement sciences more useful to the production of intellective competence in diverse students of the STEM disciplines. A Study Group on Diversity, Equity and Excellence in Achievement and Assessment in STEM Education will be established to address a set of issues posed as critical to the future of assessment for education and will undertake a series of activities culminating in the production of a report.

Lead Organization(s): 
Award Number: 
1433181
Funding Period: 
Mon, 09/01/2014 to Mon, 02/29/2016
Full Description: 

This project seeks to find ways to make the measurement sciences more useful to the production of intellective competence in diverse students of the STEM disciplines. A Study Group on Diversity, Equity and Excellence in Achievement and Assessment in Science, Technology, Engineering and Mathematics Education will be established to address a set of issues posed as critical to the future of assessment for education. Building on the work of the Gordon Commission on the Future of Assessment in Education, the Study Group will undertake a series of activities culminating in the production of a report to the field including conceptual analyses, knowledge syntheses findings, and recommended specifications for a program of research and development to advance STEM education through assessment for education.

The Study Group will consist of fifteen research scientists and scholars of pedagogical practice who are being organized to inquire into the potential of the measurement sciences to more effectively inform the teaching and learning of STEM subject matter for students whose development is challenged by the demands of diversity, equity and excellence in intellective competence. Group members are especially interested in balancing the capabilities of the measurement sciences in the assessment of developed abilities, with equal strength in the analysis, documentation and understanding of the learning and teaching processes by which intellective competence is developed. The Group will conduct a conceptual inquiry into the interrelatedness of diversity, equity, and achievement in STEM. Special attention will be given to variance in attributions, contexts and perspectives associated with differences in life conditions, cultural experience and cultural identity. The Study Group will utilize in-person and virtual deliberations; consultative conversations; and commissioned position and review papers to generate recommendations and suggested specifications for programs of research, development and praxis designed to better inform the teaching and, especially, the learning of STEM disciplines.

Multimedia Engineering Notebook Tools to Support Engineering Discourse in Urban Elementary School Classrooms (Collaborative Research: Paugh)

This collaborative, exploratory, learning strand project focuses on improving reflective decision-making among elementary school students during the planning and re-design activities of the engineering design process. Five teacher researchers in three elementary schools provide the classroom laboratories for the study. Specified units from Engineering is Elementary, a well-studied curriculum, provide the engineering content.

Award Number: 
1316762
Funding Period: 
Thu, 08/01/2013 to Sun, 07/31/2016
Full Description: 

This collaborative, exploratory, learning strand project focuses on improving reflective decision-making among elementary school students during the planning and re-design activities of the engineering design process. Five teacher researchers in three elementary schools provide the classroom laboratories for the study. Specified units from Engineering is Elementary, a well-studied curriculum, provide the engineering content. In year one, the qualitative research observes student discourse as students develop designs. Based on the results, a paper engineering note book with prompts is designed for use in year two while a digital notebook is developed. In year three, the students use the digital notebook to develop their designs and redesigns.

The research identifies patterns of language that contribute to the reflective discourse and determines how the paper and electronic versions of the notebook improve the discourse. An advisory committee provides advice and evaluation. The notebooks are described in conference proceedings and made available online.

This work synthesizes what is known about the use of the notebooks in science and engineering education at the elementary school and investigates how to improve their use through digital media.

Undergraduate Biology Education Research Program

The goals of this nine-week summer program are to develop undergraduates' knowledge and skills in biology education research, encourage undergraduates to pursue doctoral study of biology teaching and learning, expand the diversity of the talent pool in biology education research, strengthen and expand collaborations among faculty and students in education and life sciences, and contribute to the development of theory and knowledge about biology education in ways that can inform undergraduate biology instruction.

Award Number: 
1262715
Funding Period: 
Sun, 09/01/2013 to Wed, 08/31/2016
Full Description: 

The Undergraduate Biology Education Research (UBER) REU Site engages undergraduates in studying important issues specific to the teaching and learning of biology, with mentorship from faculty in the Division of Biological Sciences and the Mathematics and Science Education Department at the University of Georgia. The goals of this nine-week summer program are to develop undergraduates' knowledge and skills in biology education research, encourage undergraduates to pursue doctoral study of biology teaching and learning, expand the diversity of the talent pool in biology education research by strategically recruiting and mentoring underrepresented and disadvantaged students, strengthen and expand collaborations among faculty and students in education and life sciences, and contribute to the development of theory and knowledge about biology education in ways that can inform undergraduate biology instruction.

A programmatic effort to introduce undergraduates to the discipline of biology education research is unprecedented nationwide. Biology education research as a discipline is quite young, and systematic involvement of undergraduates has not been part of the culture or practice in biology or education. UBER aims to promote cultural change that expands the involvement of undergraduates in biology education research and raises awareness among undergraduates that biology teaching and learning are compelling foci for study that can be pursued at the graduate level and via various career paths. UBER utilizes a combined strategy of broad and strategic recruiting to attract underrepresented minority students as well as students who do not have access to biology education research opportunities at their own institutions. Evaluation plans involve tracking UBER participants over time to understand the trajectories of students who complete undergraduate training in biology education research.

Significant co-funding of this project is provided by the Division of Biological Infrastructure in the NSF Directorate for Biological Sciences in recognition of the importance of educational research in the discipline of biology. The Division of Undergraduate Education and the Division of Research on Learning in Formal and Informal Settings also provides co-funding.

Teacher's Guide to the Mathematics and Science Resources of the ELPD Framework

This two-year project will develop, pilot, validate, and publish a Teacher's Guide to the Science and Mathematics Resources of the ELPD Framework. This guide and related materials will translate the key science and mathematics concepts, ideas, and practices found within the ELPD Framework into classroom resources for direct use by teachers, schools, and districts to support English learners (ELs).

Award Number: 
1346491
Funding Period: 
Sun, 09/01/2013 to Mon, 08/31/2015
Full Description: 

The Council of Chief State School Officers (CCSSO) coordinated the development of a document addressing the implementation of Standards as guided by a framework for English Language Proficiency Development Standards (ELPD Framework). The expressed purpose of the ELPD Framework is to provide guidance to states on how to develop and use tools for the creation and evaluation of ELP standards. Once published, it became immediately apparent that the ELPD Framework would be of great help to teachers. However, the Framework was written specifically for those tasked with the responsibility to develop, adopt, or adapt state ELPD standards and assessments that support the language demands of STEM education grounded in learning performances that cojoin concepts with practices. That is, it has a technical focus rather than an instructional focus. There is an immediate need to develop and validate such a tool in states that have adopted Standards-based models, since educational agencies are now building teachers capacities to implement these standards.

This two-year project will develop, pilot, validate, and publish a Teacher's Guide to the Science and Mathematics Resources of the ELPD Framework. This guide and related materials will translate the key science and mathematics concepts, ideas, and practices found within the ELPD Framework into classroom resources for direct use by teachers, schools, and districts to support English learners (ELs).

Resources supporting ELs at different language proficiency levels in science and mathematics classrooms are sparse. Classroom-based resources supporting ELs' academic language development in science and mathematics based on career and college readiness standards are non-existent. The development of such a resource would have significant impact on science and mathematics teachers' teaching of ELs. Understanding how teachers' practice in supporting content-based academic language changes by using such a resource would be of great value for teachers, administrators, and researchers. Arguably, the ELPD Framework (and the proposed teacher's guide) has applications beyond ELs. Many challenges "at-risk" students face in science and mathematics classes may not be due to a lack in content knowledge, per se, but a lack of ability to communicate in the language of the content. The proposed teacher's guide could help teachers support all students in the language underlying the science and mathematics standards in the CCSS and NGSS.

Developing Rich Media-Based Materials for Practice-Based Teacher Education

This research and development project is premised on the notion that recent technological developments have made it feasible to represent classroom work in new ways. In addition to watching recorded videos of classroom interactions or reading written cases, teacher educators and teachers can now watch animations and image sequences, realized with cartoon characters, and made to depict activities that happened, or could have happened, in a mathematics classroom.

Award Number: 
1316241
Funding Period: 
Thu, 08/15/2013 to Tue, 07/31/2018
Full Description: 

The 4-year research and development project, Developing Rich Media-based Materials for Practice-based Teacher Education, is premised on the notion that recent technological developments have made it feasible to represent classroom work in new ways. In addition to watching recorded videos of classroom interactions or reading written cases, teacher educators and teachers can now watch animations and image sequences, realized with cartoon characters, and made to depict activities that happened, or could have happened, in a mathematics classroom. Furthermore, teacher educators and teachers can react to such animations or image sequences by making their own depictions of alternative moves by students or teachers in classroom interaction. And all of that can take place in an on-line, cloud-based environment that also supports discussion fora, questionnaires, and the kinds of capabilities associated with learning management systems. Such technologies offer important affordances to teacher educators seeking to provide candidates with course-based experiences that emphasize the development of practice-based skills. The focus of the project is on mathematics teacher education. This joint project of the University of Maryland Center for Mathematics Education and the University of Michigan will produce 6 to 8 field-tested modules for use in different courses that are a part of mathematics teacher preparation programs. The following two-pronged research question will be resolved: What are the affordances and constraints of the modules and the environment as supports for: (1) practice based teacher education and (2) a shift toward blended teacher education?

The project involves the following activities: (1) a teacher education materials development component; (2) a related evaluation component; and (3) two research components. The development phase seeks to develop both the LessonSketch.org platform and six to eight mathematics teacher education modules for use in preservice teacher education programs from around the country. The modules will be written with practice-based teacher education goals in mind and will use the capacities of the LessonSketch.org platform as a vehicle for using rich-media artifacts of teaching with preservice teacher candidates. LessonSketch Teacher Education Research and Development Fellows will be chosen through a competitive application process. They will develop their respective modules along with teams of colleagues that will be recruited to form their inquiry group and pilot the module activities. The evaluation activity will focus on the materials development aspect of the project. Data will be collected by the LessonSketch platform, which includes interviews with Fellows and their teams, perspectives of module writers, descriptive statistics of module use, and feedback from both teacher educator and preservice teacher end-users about the quality of their experiences. The first research activity of the project is design research on the kinds of technological infrastructure that are useful for practice-based teacher education. The PIs will identify tools that teacher educators need and want beyond the current capabilities for web-based support for use of rich media and will produce prototype tools inside the LessonSketch environment to meet these needs. The second research activity of the project will supplement the evaluation activity by examining the implementation of two of the modules in detail. This aspect of the research will examine the goals of the intended curriculum, the proposed modes of media use, the fidelity of the implemented curriculum, and learnings produced by preservice teachers. This research activity will help the field understand the degree to which practice-based teacher education that is mediated by an online access to rich media would be a kind of practice that could be easily incorporated into existing teacher education structures.

The project will produce 6 to 8 LessonSketch modules for use in teacher education classes. Each module will be implemented in at least eight teacher education classes across the country, which means that between 720 and 960 preservice teacher candidates will study the materials. The project aims to shift the field toward practice-based teacher education by supporting university programs to implement classroom-driven activities that will produce mathematics teachers with strong capabilities to teach mathematics effectively and meaningfully.

Language-Rich Inquiry Science with English Language Learners Through Biotechnology (LISELL-B)

This is a large-scale, cross-sectional, and longitudinal study aimed at understanding and supporting the teaching of science and engineering practices and academic language development of middle and high school students (grades 7-10) with a special emphasis on English language learners (ELLs) and a focus on biotechnology.

Award Number: 
1316398
Funding Period: 
Thu, 08/01/2013 to Tue, 07/31/2018
Full Description: 

This is a large-scale (4,000 students, 32 teachers, 5 classes per teacher per year); cross-sectional (four grade levels); and longitudinal (three years) study aimed at understanding and supporting the teaching of science and engineering practices and academic language development of middle and high school students (grades 7-10) with a special emphasis on English language learners (ELLs) and a focus on biotechnology. It builds on and extends the pedagogical model, professional development framework, and assessment instruments developed in a prior NSF-funded exploratory project with middle school teachers. The model is based on the research-supported notion that science and engineering practices and academic language practices are synergistic and should be taught simultaneously. It is framed around four key learning contexts: (a) a teacher professional learning institute; (b) rounds of classroom observations; (c) steps-to-college workshops for teachers, students, and families; and (d) teacher scoring sessions to analyze students' responses to assessment instruments.

The setting of this project consists of four purposefully selected middle schools and four high schools (six treatment and two control schools) in two Georgia school districts. The study employs a mixed-methods approach to answer three research questions: (1) Does increased teacher participation with the model and professional development over multiple years enhance the teachers' effectiveness in promoting growth in their students' understanding of scientific practices and use of academic language?; (2) Does increased student participation with the model over multiple years enhance their understanding of science practices and academic language?; and (3) Is science instruction informed by the pedagogical model more effective than regular instruction in promoting ELLs' understanding of science practices and academic language at all grade levels? Data gathering strategies include: (a) student-constructed response assessment of science and engineering practices; (b) student-constructed response assessment of academic language use; (c) teacher focus group interview protocol; (d) student-parent family interview protocol; (e) classroom observation protocol; (f) teacher pedagogical content knowledge assessment; and (g) teacher log of engagement with the pedagogical model. Quantitative data analysis to answer the first research question includes targeted sampling and longitudinal analysis of pretest and posttest scores. Longitudinal analysis is used to answer the second research question as well; whereas the third research question is addressed employing cross-sectional analysis. Qualitative data analysis includes coding of transcripts, thematic analysis, and pattern definition.

Outcomes are: (a) a research-based and field-tested prototype of a pedagogical model and professional learning framework to support the teaching of science and engineering practices to ELLs; (b) curriculum materials for middle and high school science teachers, students, and parents; (c) a teacher professional development handbook; and (d) a set of valid and reliable assessment instruments usable in similar learning environments.

CAREER: Reciprocal Noticing: Latino/a Students and Teachers Constructing Common Resources in Mathematics

The goal of this project is to extend the theoretical and methodological construct of noticing to develop the concept of reciprocal noticing, a process by which teacher and student noticing are shared. The researcher argues that through reciprocal noticing the classroom can become the space for more equitable mathematics learning, particularly for language learners.

Lead Organization(s): 
Award Number: 
1253822
Funding Period: 
Wed, 05/15/2013 to Mon, 04/30/2018
Full Description: 

The goal of this project is to extend the theoretical and methodological construct of noticing to develop the concept of reciprocal noticing, a process by which teacher and student noticing are shared. The researcher argues that through reciprocal noticing the classroom can become the space for more equitable mathematics learning, particularly for language learners. Thus, the focus of the project is on developing the concept of reciprocal noticing as a way to support better interactions between teachers and Latino/a students in elementary mathematics classrooms.

The project uses a transformative teaching experiment methodology and is guided by the initial conjectures that to make mathematics classrooms intellectually attractive places, Latino/a students and teachers need to learn to develop common resources for teaching and learning mathematics, and that reciprocal noticing as a process supports teachers and students in developing these common resources for teaching and learning mathematics. The project design centers around two research questions:How do teachers and Latino/a students tune to each other's mathematical ideas and explicitly indicate to one another how their ideas are important for discourse that promotes mathematical reasoning in classrooms characterized by reciprocal noticing? What patterns emerge across four classrooms when teachers and Latino/a students engage in reciprocal noticing?

The concept of reciprocal noticing can significantly enhance emerging research in mathematics education about the importance of teacher noticing. Further, this revised concept of noticing can transform mathematics classroom to better support English Language Learners.

The PI will incorporate project findings and videos into methods courses for preservice elementary teachers.

CAREER: Fraction Activities and Assessments for Conceptual Teaching (FAACT) for Students with Learning Disabilities

This project is studying and supporting the development of conceptual understanding of fractions by students with learning disabilities (LD).  Rather than focusing on whether students can or cannot develop conceptual understanding, the project is focused on uncovering the complex understanding students DO have.

Award Number: 
1708327
Funding Period: 
Tue, 07/01/2014 to Tue, 06/30/2020
Project Evaluator: 
Dr. Mary Little
Full Description: 

Dr. Hunt, a former middle school and elementary school mathematics in inclusive settings in a state-demonstration STEM school, works with students deemed to be at risk for mathematics difficulties or labeled as having disabilities. Hunt contends that research and pedagogical practice for children with disabilities should begin from a respect for children's ways of knowing and learning. Rather than focusing on whether students can or cannot develop conceptual understanding, research should attempt to uncover the complex understanding students DO have. She argues that teaching based in learning theory that positions children's learning as adaptation advances reasoning, sense-making, and co-construction of meaning.

The goal of Hunt's project- "CAREER: Fraction Activities and Assessments for Conceptual Teaching (FAACT)"-  is to study and support the development of conceptual understanding of fractions by students with learning disabilities (LD).  Dr. Hunt is re-conceptualizing intensive intervention as children's knowing and learning in "Small Environments". This approach suggests a redirect of research and instructional practice in mathematics for an underserved population of students. The project has the potential to offer a transformative approach to mathematics instruction for students with LD, bringing together expertise on learning disabilities and mathematics education to address an area in which there is very little research. 

The main outcomes of the project include (a) a theory of knowing, learning, and teaching connected to students with LDs in the small environment of supplemental and intensive intervention, (b) selected research-based trajectories specific to the conceptual understandings of fractions evidenced by students with LD presented in case study format, and (c) a set of practices and tools for teaching in the small environment (e.g., explicated knowing and learning framework; a set of learning situations to be used for teaching and/or formative assessment in fraction concepts, and suggestions for instructional decision making to aid teachers in designing student-centered instruction both in small groups and individualized formats).

This project was previously funded under award #1253254 and 1446250.


Project Videos

2019 STEM for All Video Showcase

Title: Fractional Reasoning: Students with Learning Disabilities

Presenter(s): Jessica Hunt, Andy Khounmeuang, Kristi Martin, Blain Patterson, & Juanita Silva


Pages

Subscribe to Equity