STEM Practices

Quality Urban Ecology Science Teaching for Diverse Learners

This project will examine the relationship between teacher professional development associated with newly developed modules in urban ecology and the achievement and engagement of long-term English learners (LTEL).  Existing Urban Ecology learning modules will be enhanced to accommodate the needs of LTELs, and teachers will participate in professional development aimed at using the new materials to effectively integrate academic science discourse and literacy development for LTELs.

Lead Organization(s): 
Award Number: 
1503519
Funding Period: 
Sat, 08/01/2015 to Tue, 07/31/2018
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. This exploratory research project will examine the relationship between teacher professional development associated with newly developed modules in urban ecology and the achievement and engagement of long-term English learners (LTEL). Participants in the project will include students in grades 4-8 in a large urban school district, elementary school teachers, middle school science teachers, and middle school teachers of English language arts. Existing Urban Ecology learning modules will be enhanced to accommodate the needs of LTELs, and teachers will participate in professional development aimed at using the new materials to effectively integrate academic science discourse and literacy development for LTELs.

The project will develop two enhanced urban ecology modules (47 lessons) for English learners in grades 4-8; science language and literacy assessments for English language learners (ELLs); an ELL STEM career awareness inventory; an urban ecology for ELLs teacher knowledge scale, and an urban ecology for ELLs pedagogy observation protocol. The materials will be tested with a stratified random sample of students identified by achievement level (low, medium, and high) and linguistic background (mainstream, LTEL, and "at risk" of becoming LTEL). A mixed-methods research design will be used to test the hypothesis that the quantity and quality of LTEL science language and literacy achievement will increase as a result of teacher participation in implementing the newly developed transdisciplinary framework for Urban Ecology for English Learners.

Collaborative Math: Creating Sustainable Excellence in Mathematics for Head Start Programs

This project will adapt and study a promising and replicable teacher professional development (PD) intervention, called Collaborative Math (CM), for use in early childhood programs. Prepared as generalists, preschool teachers typically acquire less math knowledge in pre-service training than their colleagues in upper grades, which reduces their effectiveness in teaching math. To address teacher PD needs, the project will simultaneously develop teacher content knowledge, confidence, and classroom practice by using a whole teacher approach.

Lead Organization(s): 
Award Number: 
1503486
Funding Period: 
Tue, 09/01/2015 to Sat, 08/31/2019
Full Description: 

This project was submitted to the Discovery Research K-12 (DRK-12) program that seeks to significantly enhance the learning and teaching of science, technology, engineering, and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models, and tools. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. The project will adapt and study a promising and replicable teacher professional development (PD) intervention, called Collaborative Math (CM), for use in early childhood programs. CM content will focus on nine topics emphasized in preschool mathematics, including sets, number sense, counting, number operations, pattern, measurement, data analysis, spatial relationships, and shape. These concepts are organized around Big Ideas familiar in early math, are developmentally appropriate and foundational to a young child's understanding of mathematics. The project addresses the urgent need for improving early math instruction for low-income children. Prepared as generalists, preschool teachers typically acquire less math knowledge in pre-service training than their colleagues in upper grades, which reduces their effectiveness in teaching math. To address teacher PD needs, the project will simultaneously develop teacher content knowledge, confidence, and classroom practice by using a whole teacher approach. Likewise, the project will involve teachers, teacher aides, and administrators through a whole school approach in PD, which research has shown is more effective than involving only lead teachers. Through several phases of development and research, the project will investigate the contributions of project components on increases in teacher knowledge and classroom practices, student math knowledge, and overall implementation. The project will impact approximately 200 Head Start (HS) teaching staff, better preparing them to provide quality early math experiences to more than 3,000 HS children during the project period. Upon the completion of the project, a range of well-tested CM materials such as resource books and teaching videos will be widely available for early math PD use. Assessment tools that look at math knowledge, attitudes, and teacher practice will also be available. 

The project builds on Erikson Institute research and development work in fields of early math PD and curriculum. Over a 4-year span, project development and research will be implemented in 4 phases: (1) adapting the existing CM and research measures for HS context; (2) conducting a limited field study of revised CM in terms of fidelity and director, teacher/aide, and student outcomes, and study of business as usual (BAU) comparison groups; (3) a study of the promise of the intervention promise with the phase 3 BAU group (who offered baseline in phase 2) and (4) a test of the 2nd year sustainability intervention with phase 3 treatment group. The teacher and student measures are all published, frequently used measures in early childhood education and will be piloted and refined prior to full implementation. The project is a partnership between Erikson, SRI, and Chicago Head Start programs. Project research and resources will be widely disseminated to policy makers, researchers, and practitioners.

Conceptual Model-based Problem Solving: A Response to Intervention Program for Students with Learning Difficulties in Mathematics

This project will develop a cross-platform mathematics tutoring program that addresses the problem-solving skill difficulties of second- and third-grade students with learning disabilities in mathematics (LDM). COMPS-A is a computer-generated instructional program focusing on additive word problem solving; it will provide tutoring specifically tailored to each individual student's learning profile in real time. 

Lead Organization(s): 
Award Number: 
1503451
Funding Period: 
Tue, 09/01/2015 to Fri, 08/31/2018
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

The 3-year exploratory project, Conceptual Model-based Problem Solving: A Response to Intervention Program for Students with Learning Difficulties in Mathematics, will develop a cross-platform mathematics tutoring program that addresses the problem-solving skill difficulties of second- and third-grade students with learning disabilities in mathematics (LDM). While mathematics problem-solving skills are critical in all areas of daily life, many students with LDM do not acquire key math concepts such as additive and multiplicative reasoning in a proficient manner during the early school years. In fact, about 5-10% of school-age children are identified as having mathematical disabilities which might cause them to experience considerable difficulties in the upper grades and experience persistent academic, life, and work challenges. Despite the proliferation of web-based mathematical games for early learners, there are very few programs or tools that target growth in the conceptual understanding of fundamental mathematical ideas, which is essential in enabling young students with LDM to perform proficiently in mathematical and everyday contexts. COMPS-A is a computer-generated instructional program focusing on additive word problem solving; it will provide tutoring specifically tailored to each individual student's learning profile in real time. COMPS-A will also make the reasoning and underlying mathematical model more explicit to them, and the tool's flexibility will facilitate group or one-on-one instruction in regular classroom settings, in other sessions during or after the school day, and at home. COMPS-A addresses a significant practical issue in today's classrooms by providing individualized and effective RtI intervention programs for students with LDM.

COMPS-A program represents a mathematical model-based problem-solving approach that emphasizes understanding and representation of mathematical relations in algebraic equations and, thus, will support growth in generalized problem-solving skills.COMPS-A will achieve the following objectives: 1) Create the curriculum content, screen design, and a teacher's manual for all four modules in the area of additive word problem solving; 2) Design and develop the cross-platform computer application that can be ported as a web-based, iPad, Android, or Windows app, and this flexibility will make the program accessible to all students; and 3) Conduct small-scale single subject design and randomized controlled trial studies to evaluate the potential of COMPS-A to enhance students' word problem-solving performance. The following research questions will be resolved: (1) What is the functional relationship between the COMPS-A program and students' performance in additive mathematics problem solving? (2) What is the teacher's role in identifying students' misconceptions, alternative reasoning, and knowledge gaps when students are not responsive to the intervention program? (3) What are the necessary instructional scaffolds that will address students' knowledge gaps and therefore facilitate the connection between students' conceptual schemes and the mathematical models necessary for problem solving in order to promote meaningful understanding and construction of additive reasoning? A functional prototype of the COMPS-A will be developed followed by a single-subject design study with a small group of students with LDM to field-test the initial program. Finally, a pretest-posttest, comparison group design with random assignment of participants to groups will then be used to examine the effects of the two intervention conditions: COMPS-A and business as usual. An extensive dissemination plan will enable the project team to share results to a wider community that is responsible for educating all students and, especially, students with LDM.

 

TRUmath and Lesson Study: Supporting Fundamental and Sustainable Improvement in High School Mathematics Teaching (Collaborative Research: Schoenfeld)

Given the changes in instructional practices needed to support high quality mathematics teaching and learning based on college and career readiness standards, school districts need to provide professional learning opportunities for teachers that support those changes. The project is based on the TRUmath framework and will build a coherent and scalable plan for providing these opportunities in high school mathematics departments, a traditionally difficult unit of organizational change.

Award Number: 
1503454
Funding Period: 
Wed, 07/01/2015 to Sun, 06/30/2019
Full Description: 

Given the changes in instructional practices needed to support high quality mathematics teaching and learning based on college and career readiness standards, school districts need to provide professional learning opportunities for teachers that support those changes. The project will build a coherent and scalable plan for providing these opportunities in high school mathematics departments, a traditionally difficult unit of organizational change. Based on the TRUmath framework, characterizing the five essential dimensions of powerful mathematics classrooms, the project brings together a focus on curricular materials that support teaching, Lesson Study protocols and materials, and a professional learning community-based professional development model. The project will design and revise professional development and coaching guides and lesson study mathematical resources built around the curricular materials. The project will study changes in instructional practice and impact on student learning. By documenting the supports used in the Oakland Unified School District where the research and development will be conducted, the resources can be used by other districts and in similar work by other research-practice partnerships.

This project hypothesizes that the quality of classroom instruction can be defined by five dimensions - quality of the mathematics; cognitive demand of the tasks; access to mathematics content in the classroom; student agency, authority, and identity; and uses of assessment. The project will use an iterative design process to develop and refine a suite of tool, including a conversation guide to support productive dialogue between teachers and coaches, support materials for building site-based professional learning materials, and formative assessment lessons using Lesson Study as a mechanism to enact reforms of these dimensions. The study will use a pre-post design and natural variation to student the relationships between these dimensions, changes in teachers' instructional practice, and student learning using hierarchical linear modeling with random intercept models with covariates. Qualitative of the changes in teachers' instructional practices will be based on coding of observations based on the TRUmath framework. The study will also use qualitative analysis techniques to identify themes from surveys and interviews on factors that promote or hinder the effectiveness of the intervention.

PBS NewsHour STEM Student Reporting Labs: Broad Expansion of Youth Journalism to Support Increased STEM Literacy Among Underserved Student Populations and Their Communities

The production of news stories and student-oriented instruction in the classroom are designed to increase student learning of STEM content through student-centered inquiry and reflections on metacognition. This project scales up the PBS NewsHour Student Reporting Labs (SRL), a model that trains teens to produce video reports on important STEM issues from a youth perspective.

Award Number: 
1503315
Funding Period: 
Sat, 08/01/2015 to Wed, 07/31/2019
Full Description: 

The Discovery Research K-12 program (DR-K12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. This project scales up the PBS NewsHour Student Reporting Labs (SRL), a model that trains teens to produce video reports on important STEM issues from a youth perspective. Participating schools receive a SRL journalism and digital media literacy curriculum, a mentor for students from a local PBS affiliate, professional development for educators, and support from the PBS NewsHour team. The production of news stories and student-oriented instruction in the classroom are designed to increase student learning of STEM content through student-centered inquiry and reflections on metacognition. Students will develop a deep understanding of the material to choose the best strategy to teach or tell the STEM story to others through digital media. Over the 4 years of the project, the model will be expanded from the current 70 schools to 150 in 40 states targeting schools with high populations of underrepresented youth. New components will be added to the model including STEM professional mentors and a social media and media analytics component. Project partners include local PBS stations, Project Lead the Way, and Share My Lesson educators.

The research study conducted by New Knowledge, LLC will add new knowledge about the growing field of youth science journalism and digital media. Front-end evaluation will assess students' understanding of contemporary STEM issues by deploying a web-based survey to crowd-source youth reactions, interest, questions, and thoughts about current science issues. A subset of questions will explore students' tendencies to pass newly-acquired information to members of the larger social networks. Formative evaluation will include qualitative and quantitative studies of multiple stakeholders at the Student Reporting Labs to refine the implementation of the program. Summative evaluation will track learning outcomes/changes such as: How does student reporting on STEM news increase their STEM literacy competencies? How does it affect their interest in STEM careers? Which strategies are most effective with underrepresented students? How do youth communicate with each other about science content, informing news media best practices? The research team will use data from pre/post and post-delayed surveys taken by 1700 students in the STEM Student Reporting Labs and 1700 from control groups. In addition, interviews with teachers will assess the curriculum and impressions of student engagement.


Project Videos

2019 STEM for All Video Showcase

Title: How Video Storytelling Reengages Teenagers in STEM Learning

Presenter(s): Leah Clapman & William Swift

2018 STEM for All Video Showcase

Title: PBS NewsHour's STEM SRL Transforms Classrooms into Newsrooms

Presenter(s): Leah Clapman & William Swift

2017 STEM for All Video Showcase

Title: PBS is Building the Next Generation of STEM Communicators

Presenter(s): Leah Clapman, John Fraser, Su-Jen Roberts, & Bill Swift


Playing with the Data: Developing Digital Supports for Middle School Science Teachers using Game-based Formative Assessment

This project will use cycles of design-based research to build new knowledge about how to facilitate teachers' interpretation and use of digital game-based formative assessment data. The research will also inform the revision and expansion of Playfully, an existing, online data-reporting dashboard that can be used with multiple digital games.

Award Number: 
1503255
Funding Period: 
Wed, 07/01/2015 to Sat, 06/30/2018
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

This project will use cycles of design-based research to build new knowledge about how to facilitate teachers' interpretation and use of digital game-based formative assessment data. The research will also inform the revision and expansion of Playfully, an existing, online data-reporting dashboard that can be used with multiple digital games. The project is a collaboration between researchers at Education Development Center Inc.'s Center for Children and Technology (EDC|CCT) and the assessment and game development teams at GlassLab. The research and development teams will engage in a three-year partnership with 60 middle-grade science teachers working in diverse school settings in different parts of the country. The aim of the project is to refine an online formative assessment platform that utilizes data from a video game designed to teach argumentation at the middle school level. It provides rigorous research on the design features of data tools and associated materials available to teachers to inform their ongoing instruction (i.e., formative assessment tools) when using game-based platforms.

Dissemination of the results of this project will include practical, evidence-based suggestions for supporting middle school science teachers' use of digital games for assessment, and for the design and implementation of data dashboards. Key audiences include educational game designers, game-based assessment developers, formative assessment experts, and leaders in middle grade science teaching and learning.

Strategies for Leading Classroom Discussions Aimed at Core Ideas and Scientific Modeling Practices

This project will use video case studies to identify key strategies used by exemplary teachers to guide class discussions. The project will study teachers in the areas of high school mechanics and electricity, and middle school life sciences, and is designed to develop the constructs and language that will enable us to describe key discussion leading strategies.

Award Number: 
1503456
Funding Period: 
Sat, 08/01/2015 to Tue, 07/31/2018
Full Description: 

The Next Generation Science Standards (NGSS) have set goals for students to learn scientific models as disciplinary core ideas in addition to scientific reasoning practices and cross cutting ideas. Given these advances in national standards, educators are now asking for details about: (a) strategies for teaching the core disciplinary ideas; (b) how to teach the components of scientific thinking practices; and (c) how to integrate those practices with the teaching of core ideas. This project will use video case studies to identify key strategies used by exemplary teachers to guide class discussions toward these goals. The project will study teachers in the areas of high school mechanics and electricity, and middle school life sciences, and is designed to develop the constructs and language that will enable us to describe key discussion leading strategies. Clarified descriptions of the strategies will be disseminated to teachers via a website on discussion leading strategies for building models as core ideas, and accompanied by real classroom examples.

In order to organize the strategies, the project will also combine the results of the classroom case studies with findings from studies of thinking processes in scientists to develop an integrated theoretical framework for model based learning and teaching in science. The theoretical framework will serve as a guide for organizing instruction, integrating research findings, and sequencing strategies for teacher educators and curriculum developers. The framework will start from practices in the NGSS standards for modeling and add detail by identifying smaller practices and supporting teaching strategies at four different time scale levels--from 5-second engagements with mental simulations, to the use of minutes-long constructive reasoning processes, to larger modeling cycles lasting roughly 10 minutes to hours, to model construction modes that can last 15 minutes to days. A simplified version of the theoretical framework will give a way to introduce teachers to strategies in an organized manner, one level at a time. The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

SimScientists Games: Development of Simulation-Based Game Designs to Enhance Formative Assessment and Deep Science Learning in Middle School

This project will focus on understanding how educational games, designed according to research-based learning and assessment design principles, can better assess and promote students' science knowledge, application of science process skills, and motivation and engagement in learning.

Lead Organization(s): 
Award Number: 
1503481
Funding Period: 
Sat, 08/01/2015 to Wed, 07/31/2019
Full Description: 

The Discovery Research K-12 (DRK-12) program seeks to significantly enhance the learning and teaching of science, technology, engineering, and mathematics (STEM) by preK-12 students and teachers through research and development of innovative resources, models, and tools. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. This project is a four-year design and development study submitted to the assessment strand of the program. It will focus on understanding how educational games, designed according to research-based learning and assessment design principles, can better assess and promote students' science knowledge, application of science process skills, and motivation and engagement in learning. The project will develop a new genre of games to serve as formative assessment resources designed to collect evidence of science learning during gameplay, provide feedback and coaching in the form of hints, and reinforce middle grade (6th-8th) students' life science concepts and investigation practices about ecosystems described in the Next Generation Science Standards (NGSS) (Achieve, 2013). The games will build on the designs of the simulation-based, curriculum-embedded assessments developed in previous NSF-funded efforts, which include student progress reports and reflection activities that allow teachers to provide feedback to students and adjust instruction. The design of the games will draw from multiple lines of research, such as cognition, particularly model-based learning; principled assessment design; and motivation. Intended to provide engaging activities for understanding and investigating the system components, roles, interactions, and population dynamics of ecosystems, the project will produce two sets of comprehensive games: (1) Organisms and Interactions, and (2) Emergent Population Levels: Managing an Ecosystem. Each game will consist of progressively advanced mini-games. Twenty-four California Bay Area middle school teachers will participate in the study. Teacher professional development (PD) will include face-to-face sessions and an online platform that permits a wide range of interactions among participants and the facilitators. The PD will emphasize the alignment of the ecosystem simulation-based curriculum modules with their state standards, instructional materials, and the new games. 

The project will address six research questions: (1) How well do the games align with the ecosystem crosscutting concepts, core ideas, and inquiry practices in the NGSS?; (2) How well do game components meet quality standards?; (3) How well do the games integrate with the existing simulation-based curriculum modules and the teachers' existing instructional sequence?; (4) What effect does the use of the games have on students' understanding of the science concepts, scientific practices, and collaboration skills?; (5) How does success in gameplay relate to improved performance on the external outcome measures comprised of the simulation-based benchmark and the pre/posttest?; and (6) How does the use of the games affect students' engagement in science learning? In a Year 1 usability study, the project will test, analyze, and revise alpha versions of the games. In Year 2, a classroom feasibility study of beta versions will inform further revisions. In Year 3, six teachers will pilot-test the games. A second pilot test in Year 4 will examine the effectiveness of the games by comparing student performance in classes using the existing simulation-based curriculum-embedded assessments and reflection activities with classes using the curriculum-embedded assessments plus the new games. Data collection and analysis strategies include: (a) alignment reviews; (b) focus groups and usability testing; (c) cognitive labs for construct validity and usability; (d) game reports (badges); (e) pre/posttest of American Association for the Advancement of Science (AAAS) items; (f) benchmark assessment data; (g) student interest in the games and science; (h) teacher surveys; (i) case studies; (j) game quality analysis; (k) differential item functioning; (l) analysis of covariance; and (m) analysis of variance on posttest scores (outcome variable) to compare the means across student groups (by intervention mode) and their prior science achievement levels.

Learning Labs: Using Videos, Exemplary STEM Instruction and Online Teacher Collaboration to Enhance K-2 Mathematics and Science Practice and Classroom Discourse

This project will develop and study two sets of instructional materials for K-2 teacher professional development in mathematics and science that are aligned with the CCSS and NGSS. Teachers will be able to review the materials online, watch video of exemplary teaching practice, and then upload their own examples and students' work to be critiqued by other teachers enrolled in professional learning communities as well as expert coaches.

Lead Organization(s): 
Award Number: 
1417757
Funding Period: 
Wed, 04/15/2015 to Sat, 03/31/2018
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. The investigators of this study propose to develop and study two sets of instructional materials for K-2 teacher professional development in mathematics and science that are aligned with the Common Core State Standards in Mathematics (CCSS) and the Next Generation Science Standards (NGSS). They will develop two modules in each subject area and an introductory module that prefaces and integrates the science and mathematics materials. Teachers will be able to review the materials online, watch video of exemplary teaching practice, and then upload their own examples and students' work to be critiqued by other teachers enrolled in professional learning communities as well as expert coaches. New instructional materials aligned with the standards are needed to assist teachers in meeting the challenging instructional practices recommended. To date, scant few resources of this type exist and, given many school districts have limited resources, more cost-effective forms of development such as this must be found. A particular strength of this project is that teachers will be able to engage in the courses online, on an ongoing basis and integrate what they have learned into their daily teaching practice.

The investigators propose a program of design research to develop and improve the modules. The central hypothesis is a test of the Teaching Channel model--that the modules and professional learning communities result in significant changes in the quality of instructional practice. Text analytics will be performed on the online discussion to detect changes in group discourse over time. Changes in instructional quality and vision will be measured by observing the videos posted by teachers. Pre-post tests of student work will be performed. The findings of the research will be disseminated through conference presentations, publications, and the Teaching Channel website.

Developing Teachers' Capacity to Promote Argumentation in Secondary Science

This project will produce insights into the challenges teachers face in modifying their teaching in the substantial and complex ways demanded by the Next Generation Science Standards. This project will develop and study a program of professional development to help middle and high school science teachers support their students to learn to argue scientifically. 

Award Number: 
1503511
Funding Period: 
Wed, 07/01/2015 to Sun, 06/30/2019
Full Description: 

This project will produce insights into the challenges teachers face in modifying their teaching in the substantial and complex ways demanded by the Next Generation Science Standards. This project will develop and study a program of professional development to help middle and high school science teachers support their students to learn to argue scientifically. The program includes strategies for organizing science activities to create contexts where students have something to argue about and teaching practices that promote sustained, productive argumentation among students. Results will document what aspects of these new practices teachers find easier and more difficult to implement, and how challenges are influenced by the urban schooling contexts in which project teachers work. The project will also further our understanding of how site-based professional development can be structured to support teacher learning and improvement.

The project is a longitudinal study of a cohort of 30 secondary science teachers from an urban school district in California. The professional development (PD) program will be organized around intensive summer institutes followed by 2 school-based lesson study cycles each year, facilitated by trained coaches. The PD work will be carried out over three years. All PD sessions will be recorded for interaction analysis to identify variations in coaching and teacher participation and the influences of such variation on teacher learning. Repeated measures of teachers' conceptions of argumentation will be given over 3 years as a measure of teacher learning. An observation protocol will be developed and used to measure teacher talk and its change over time. A sub-sample of teachers' classrooms will be video recorded to produce a longitudinal record for interaction analyses to link teacher talk to patterns of student argumentation. The third year of the project will add measures of student learning and link them to variations in teacher practice. The final year of the project will produce retrospective analyses that link pathways in teacher learning to features of the PD program and teachers' participation. The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

Pages

Subscribe to STEM Practices