STEM Practices

Integrating Chemistry and Earth Science

This project will design, develop, and test a new curriculum unit for high school chemistry courses that is organized around the question, "How does chemistry shape where I live?" The new unit will integrate relevant Earth science data, scientific practices, and key urban environmental research findings with the chemistry curriculum to gain insights into factors that support the approach to teaching and learning advocated by current science curriculum standards.

Award Number: 
1721163
Funding Period: 
Tue, 08/15/2017 to Wed, 07/31/2019
Full Description: 

This Integrating Chemistry and Earth science (ICE) project will design, develop, and test a new curriculum unit for high school chemistry courses that is organized around the question, "How does chemistry shape where I live?" The new unit will integrate relevant Earth science data, scientific practices, and key urban environmental research findings with the chemistry curriculum to gain insights into factors that support the approach to teaching and learning advocated by current science curriculum standards. The overarching goal of the project is to develop teacher capacity to teach and evaluate student abilities to use the practices of scientists and concepts from Earth science and chemistry to understand important phenomena in their immediate, familiar environments. The project has the potential to serve as a model for how to make cutting edge science directly accessible to all students. The project is a collaborative effort that engages scientists, science education researchers, curriculum developers, school curriculum and instruction leaders, and science teachers in the longer term challenge of infusing Earth science concepts and practices across the core high school science courses.

Current guidelines and standards for science education promote learning that engages students in three interrelated dimensions: disciplinary core ideas, scientific practices, and crosscutting ideas. This project is guided by the hypothesis that when provided sustained opportunities to engage in three-dimensional learning experiences, in an integrated Earth science and chemistry context, students will improve in their ability to demonstrate the coordination of disciplinary core ideas, scientific practices, and crosscutting concepts when solving problems and developing explanations related to scientific phenomena. This project will employ a design based research approach, and during the two development-enactment-analysis-and-redesign cycles, the project team will collect student assessment data, teacher interview data, observational data from lessons, teacher surveys, and reflective teacher logbooks. These collected data will provide information about how teachers implement the lessons, what students do during the lessons, and what students learn from them that will lead to better design and a better understanding of student learning. This information will be used to inform the modification of lessons from cycle to cycle, and to inform the professional development materials for teachers. The research agenda for the project is guided by the following questions: 1. What are the design features of ICE lessons that support teachers in enacting three-dimensional instruction within the context of their classroom? 2. What are the design features of embedded three-dimensional assessments that yield useful classroom data for teachers and researchers regarding their students' abilities to integrate core ideas, scientific practices, and crosscutting concepts? 3. What is the nature of student learning related to disciplinary core ideas, scientific practices, and crosscutting concepts that results from students' engagement in ICE lesson sets? 4. What differences emerge in student engagement and learning outcomes for ICE lessons that incorporate local phenomena or data sets as compared to lessons that do not? 5. What contextual factors (i.e., school context, administrative support, time constraints, etc.) influence teachers' implementation of three-dimensional instruction embedded within ICE lessons?


Project Videos

2019 STEM for All Video Showcase

Title: Integrating Chemistry and Earth Science (ICE)

Presenter(s): Alan Berkowitz, Vonceil Anderson, Bess Caplan, Kevin Garner, & Jonathon Grooms


Engaging Students in Scientific Practices: Evaluating Evidence and Explanation in Secondary Earth and Space Science

This project will develop, implement, test, and revise instructional approaches and materials for high school students that focus on the links between scientific evidence and alternative explanations of phenomena relating to Earth and space education. Students will learn to construct diagrams showing the links between explanatory models of natural phenomena and lines of evidence, and then evaluate the plausibility of various alternative explanations for events.

Lead Organization(s): 
Award Number: 
1721041
Funding Period: 
Fri, 09/01/2017 to Tue, 08/31/2021
Full Description: 

This project will develop, implement, test, and revise instructional approaches and materials for high school students that focus on the links between scientific evidence and alternative explanations of phenomena relating to Earth and space education. Students will examine alternative explanations for natural phenomena associated with extreme weather events, freshwater resource availability, and related topics in learning how to evaluate scientifically valid lines of evidence and explanation. Students will learn to construct diagrams showing the links between explanatory models of natural phenomena and lines of evidence, and then evaluate the plausibility of various alternative explanations for events. It is expected that engagement in these activities will help students gain proficiency in model-based reasoning, critical thinking, planning and analyzing scientifically valid investigations, constructing plausible explanations, engaging in collaborative argumentation, and critically evaluating scientific information.

This 4-year Design and Development project will examine use of Model-Evidence Link (MEL) diagrams that are intended to help students cognitively construct mental scaffolds that assist their engagement in the practices of critical evaluation, plausibility appraisal, and knowledge construction related to science topics that are considered by some as controversial. Prior research has demonstrated the potential educational outcomes of using MEL diagrams, but this project will extend the previous work by examining an approach where students construct their own MEL diagrams (build-a-MELs, or baMELs). The project will examine the use of both pre-constructed MELs and baMELs for effectiveness in promoting student engagement in scientific reasoning and practices. The project will employ design-based research methodologies in pursuing answers to three research questions: (1) Do baMEL activities tested in multiple high school classroom settings promote critical evaluation, plausibility reappraisal, and  scientifically accurate knowledge construction about controversial Earth and space science topics? (2) How do these additional baMELs differ from pre-constructed MELs in promoting critical evaluation, plausibility reappraisal, and knowledge construction? And (3) To what extent does repeated use of both pre-constructed MELs and baMELs result in student engagement of scientific practices (i.e., asking critical questions, using model-based reasoning, planning and analyzing scientifically valid investigations, constructing plausible explanations, engaging in collaborative argumentation, and critically evaluating scientific information)? The project will engage high school students taking Earth and space classes in selected schools of Georgia, New Jersey, and within Philadelphia. Teacher professional development opportunities associated with the project will include summer institutes, classroom supports, and mentoring sessions.

Fostering Collaborative Computer Science Learning with Intelligent Virtual Companions for Upper Elementary Students (Collaborative Research: Wiebe)

The project will provide the opportunity for upper elementary students to learn computer science and build strong collaboration practices.

Partner Organization(s): 
Award Number: 
1721000
Funding Period: 
Tue, 08/15/2017 to Sat, 07/31/2021
Full Description: 

There is growing recognition that children can, and should, learn computer science. One of the central tenets of computer science is that it is a collaborative discipline, yet children do not start out with an intrinsic ability to collaborate. The project will provide the opportunity for upper elementary students to learn computer science and build strong collaboration practices. Leveraging the promise of virtual learning companions, the project will address three thrusts. First, the project will collect datasets of collaborative learning for computer science in diverse upper elementary school classrooms. Second, the project will design, develop, and iteratively refine its intelligent virtual learning companions, which support dyads of students in a scaffolded computer science learning environment with an interactive online coding tool. Third, the project will generate research findings and evidence about how children collaborate in computer science learning, and how best to support their collaboration with intelligent virtual learning companions. There will be three families of deliverables: learning activities and professional development, an intelligent learning environment with virtual learning companions, and research evidence that furthers the state of scholarship and practice surrounding the collaborative learning of computer science. The project will situate itself in highly diverse elementary schools in two states, Durham County, North Carolina and Alachua County, Florida. This project is supported by the Discovery Research PreK-12 program, which funds research and development of STEM innovations and approaches.

The project addresses the research question, "How can we support upper elementary-school students in computer science learning and collaboration using intelligent virtual learning companions?" The initial dataset will provide a ground-truth measure of students' collaboration approaches to classroom computer science learning tasks through instrumenting computer labs in elementary schools for collecting dialogue and problem-solving activity. The project will collect triangulating qualitative data to better understand impactful classroom dynamics around dyadic learning of computer science. The technical innovation of the project is the way in which student dyads are supported: each pair of children within the elementary school classroom will interact with a dyad of state of-the-art intelligent virtual learning companions. These companions will enhance the classroom experience by adapting in real time to the students' patterns of collaboration and problem solving to provide tailored support specifically for that pair of students. The virtual learning companions will model crucial dimensions of healthy collaboration through their dialogue with one another, including self-explanation, question generation, attributing challenges to the task and not to deficits in each other, and establishing common ground through uptake of ideas. The project will compare outcomes of computer science learning as measured in two ways: individual pre-test to post-test, and quality of collaboratively produced solutions. The project team will measure collaborative practices through dialogue analysis for the target collaboration strategies, as well as interest and self-efficacy for computer science. The project will utilize a multilevel model design to study the effect of the virtual learning companions on student outcomes. Using speech, dialogue transcripts, code artifact analysis, and multimodal analysis of gesture and facial expression, the team will conduct sequential analyses that identify the virtual learning companion interactions that are particularly beneficial for students, and focus our development efforts on expanding and refining those interactions. They will also identify the affordances that students did not engage with and determine whether to eliminate or re-cast them. The analytics of collaborative process data will once again be augmented with qualitative classroom data from field notes, focus groups, and semi-structured interviews with students and teachers. The themes that emerge will guide subsequent refinement of the environment and learning activities.

Building Capacity to Retain Underrepresented Students in STEM Fields

This workshop provides minority serving institutions with an opportunity to engage in dialogue about effective ways to create, implement, and evaluate models of intervention that will advance knowledge about retaining underrepresented minorities in STEM fields. It will advance knowledge in life science and the biosciences for K-12 and undergraduate students attending local schools or eligible minority-serving institutions.

Lead Organization(s): 
Award Number: 
1741748
Funding Period: 
Mon, 05/01/2017 to Mon, 04/30/2018
Full Description: 

The NSF invests in a number of programs targeting underrepresented populations and institutions relative to its meeting its goals for broadening participation in STEM. This workshop provides minority serving institutions with an opportunity to engage in dialogue about effective ways to create, implement, and evaluate models of intervention that will advance knowledge about retaining underrepresented minorities in STEM fields. It will advance knowledge in life science and the biosciences for K-12 and undergraduate students attending local schools or eligible minority-serving institutions. The workshop will focus on assisting minority serving institutions with use of research designs, and review of best practices for intervention shown to be effective in helping underrepresented student cope with chronic stresses that interfere with their retention in STEM fields and careers. The target audience for the workshop will be the participating institutions and their undergraduate students, in partnership with local K-12 schools.

In collaboration with Quality Education for Minority and MERAssociates, Rutgers University Newark will provide a unique setting to convene more than 100 participants to attend the workshop. The participants will include deans and/or department chairs; STEM faculty; educational researchers, and institutional representatives such as Vice Presidents of Academic Affairs, Provosts, or other administrators. The participants will work in teams of 4-5 to address science research topics and activities related to curriculum development, teacher support, and student engagement. Outcomes from the workshops will provide insights about successful strategies, areas of future research, and awareness about the need for better intervention models that support underrepresented minority students in STEM.

Integration of Engineering Design and Life Science: Investigating the influence of an Intervention on Student Interest and Motivation in STEM Fields

This project will investigate the integration of engineering design, practices, and thinking into middle school life science curriculum while providing opportunities for students to foster knowledge of and increase interest in life and biosciences. The project will specifically respond to the need to create, implement, and evaluate a model intervention that will advance the knowledge base for establishing and retaining underrepresented minorities in STEM fields.

Lead Organization(s): 
Award Number: 
1721141
Funding Period: 
Fri, 09/01/2017 to Tue, 08/31/2021
Full Description: 

This project will investigate the integration of engineering design, practices, and thinking into middle school life science curriculum while providing opportunities for students to foster knowledge of and increase interest in life and biosciences. The project will specifically respond to the need to create, implement, and evaluate a model intervention that will advance the knowledge base for establishing and retaining underrepresented minorities in STEM fields. Specifically, the project will partner with middle school science teachers from two local school corporations, STEM university faculty members and undergraduate engineering students, and university-based outreach coordinators from a minorities engineering program, the office of future engineers, and women in engineering program. Through this combined effort, both school corporations that serve underserved, culturally diverse, and socioeconomically disadvantaged students in rural communities; will have broad-based support for engaging 36 teachers and 3000 students in integrated life science with engineering design.

The project will employ a mixed methods research design incorporating both qualitative and quantitative approaches for data collection and analyses. The research team will conduct quantitative analyses by using Hierarchical Linear Modeling to determine the extent to which integrating life science with engineering design and thinking impact student learning of life science concepts and interest in life and biosciences. Qualitative approaches, including discourse analysis, will be used to delve deeper into student learning of the targeted life science concepts. Through this research, the project will advance evidence-based understanding of learning, enhance the theoretical models of student life science learning, and merge and extend the successes of previous studies by using the faculty expertise in effective approaches in engineering integration in K-12 science classrooms. Specifically, concept assessments, interest surveys, recordings of classroom discourse, student artifacts (e.g., design reports), interviews, and classroom observations will be used as data sources. Outcomes from the project will advance the knowledge base for establishing and retaining underrepresented minorities in STEM fields. The life STEM focused design tasks will be disseminated through an online peer-reviewed digital library available for use across the U.S. and beyond. Along with the design-based tasks on this website; results from the intervention model will be disseminated through electronic and print media to inform researchers, educators, administrators, and policy makers who play critical roles in enhancing student learning of and interest in STEM, about pathways to broadening participation in STEM.

Science and Engineering Education for Infrastructure Transformation

This project focuses on the research and develop an engineering education technology and pedagogy that will support project-based learning of science, engineering, and computation concepts and skills underlying the strategically important "smart" and "green" aspects of the infrastructure. The project will develop transformative technologies and curriculum materials to turn the campus of a high school or a geographical information system such as Google Maps into an engineering laboratory with virtually unlimited opportunities for learning and exploration.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1721054
Funding Period: 
Sun, 10/01/2017 to Thu, 09/30/2021
Full Description: 

The Concord Consortium in collaboration with Purdue University will research and develop an engineering education technology and pedagogy that will support project-based learning of science, engineering, and computation concepts and skills underlying the strategically important "smart" and "green" aspects of the infrastructure. This project will develop transformative technologies and curriculum materials to turn the campus of a high school or a geographical information system such as Google Maps into an engineering laboratory with virtually unlimited opportunities for learning and exploration. The project will deliver two innovations: 1) The Smart High School is an engineering platform for designing Internet of Things systems for managing the resources, space, and processes of a school based on real-time analysis of data collected by various sensors deployed by students on campus; and 2) the Virtual Solar World is a computational modeling platform for students to design, deploy, and connect virtual solar power solutions for their homes, schools, and regions. Six standards-aligned curriculum units based on these technologies will be developed to guide student learning and support educational research. Approximately 2,000 students from rural, suburban, and urban high schools in Indiana, Massachusetts, New Hampshire, and Ohio will participate in this research. project products and findings through the Internet, conferences, publications, and partner networks.

The research is designed to identify technology-enhanced instructional strategies that can simultaneously foster the growth of skills and self-efficacy in scientific reasoning, design thinking, and computational thinking, all of which are needed to build the future infrastructure. The focus on infrastructure transformation is aligned with NSF's vision of smart and connected communities. Although this project will use the context of smart and green infrastructure to engage students to solve real-world problems, the skills of scientific reasoning, design thinking, and computational thinking that they will acquire through meeting the challenges of this project can be transferrable to other topics and fields. Using a design-based research approach, a rich set of formative and summative data will be collected from these students for probing into three research questions: 1) To what extent does the integrated learning model help students develop and connect scientific reasoning, design thinking, and computational thinking skills?; 2) To what extent is students' interest in cognate careers affected by the authenticity of engineering design challenges?; and 3) How do the variations in the solutions to overcome the cognitive and practical difficulties of real-world problems impact learning outcomes and career interest? The data sources include pre/post-tests, process data, self-reports, observations, surveys, interviews, and participant information.

Promoting Scientific Explorers Among Students with Learning Disabilities: The Design and Testing of a Grade 2 Science Program Focused on Earth's Systems

The purpose of this project is to design and empirically evaluate a second grade science program, Scientific Explorers, aimed at promoting an early foundation for learning science among all students, including students at risk for or with learning disabilities in reading and mathematics.

Lead Organization(s): 
Award Number: 
1720958
Funding Period: 
Thu, 06/01/2017 to Mon, 05/31/2021
Full Description: 

A robust understanding of core science concepts and practices is necessary for obtaining jobs in STEM (science, technology, engineering, and math) fields. Despite these occupational and practical affordances, few effective instructional tools exist for the elementary science classroom. Moreover, early elementary school teachers have limited materials at their disposal to promote a rich knowledge of science among the full range of learners. The purpose of this project is to address this need by designing and empirically evaluating a second grade science program, Scientific Explorers, aimed at promoting an early foundation for learning science among all students, including students at risk for or with learning disabilities in reading and mathematics. Scientific Explorers will be designed to improve students' knowledge and understanding of core science concepts. Recognizing the important role of early literacy and mathematics in science learning and teaching, this project will integrate core disciplinary ideas with critical mathematics and literacy standards. To support students as they engage in scientific tasks associated with Earth's Systems, this project will engineer the Scientific Explorers program around a guided inquiry framework. Another aim of this project is to develop and empirically validate a science assessment that measures students' knowledge and application of core science concepts and practices related to Earth's Systems.

Employing a mixed-method approach, this project will investigate the feasibility and efficacy of the Scientific Explorers program. Additional research activities will include establishing the reliability and validity of a second grade science assessment. Approximately 40 second grade classrooms from two different geographical regions will participate in the project. Using multilevel modeling and item response theory techniques, this project will address five primary research questions: (1) To what extent can teachers feasibly implement the Scientific Explorers program in authentic education settings? (2) What is the impact of Scientific Explorers on the science achievement of students in participating classrooms? (3) Do early literacy skills at the beginning of second grade predict differential response to the Scientific Explorers program? (4) Does responsiveness to the Scientific Explorers program differ as a function of reading disability, mathematics disability, or a learning disability in reading and mathematics (comorbid LD)?, and (5) To what extent does the early science achievement measure demonstrate technical adequacy (reliability and validity)?

High School Students' Climate Literacy Through Epistemology of Scientific Modeling (Collaborative Research: Forbes)

This project will focus on learning about model based reasoning in science, and will develop, implement, study, and refine a 6-week climate science module for high school students. The module will feature use of a web-based climate modeling application, and the project team will collect and analyze evidence of model-based reasoning about climate phenomena among students.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1720838
Funding Period: 
Fri, 09/01/2017 to Fri, 12/31/2021
Full Description: 

This project will focus on learning about model based reasoning in science, and will develop, implement, study, and refine a 6-week climate science module for high school students. The module will feature use of a web-based climate modeling application, and the project team will collect and analyze evidence of model-based reasoning about climate phenomena among students. Scientists routinely use data-intensive, computer-based models to study complex natural phenomena, and modeling has become a core objective of current science curriculum standards. The project will provide new insights about student use of scientific models to understand natural phenomena, and advance knowledge about curriculum, instruction, and assessment practices that promote model-based reasoning among students.

This 4-year Design and Development project will examine use of a web-based climate modeling tool designed to provide non-scientists experiences with climate modeling in high school geoscience classrooms. A theoretically-grounded and empirically tested approach to design-based research, instructional design, and assessment development will be used in an iterative cycle of instructional innovation and education research to find answers to two research questions: 1) How do secondary students develop epistemic and conceptual knowledge about climate? And 2) How do secondary science teachers support student use of climate modeling application to develop epistemic and conceptual knowledge about climate? Data associated with conceptual and epistemic knowledge, curriculum-embedded modeling tasks, interviews, and videorecorded observations of instruction will be used to study impacts of the new curriculum module on 55 high school science teachers and 3,000 students. Project participants include students from low socioeconomic populations and other groups underrepresented in STEM fields. The curriculum will also serve as a resource for an existing, online professional development course at the American Museum of Natural History that engages teachers nationwide.

Designing a Middle Grades Spatial Skills Curriculum

This project will create a portable training system that can be easily deployed in middle grades (5th-7th grade) as a prototype for increasing students' spatial reasoning skills. The project will study gender differences in spatial reasoning and examine how learning experiences can be designed to develop spatial skills using Minecraft as a platform.

Lead Organization(s): 
Award Number: 
1720801
Funding Period: 
Sat, 07/01/2017 to Tue, 06/30/2020
Full Description: 

The ability to make spatial judgements and visualize has been shown to be a strong indicator of students' future success in STEM-related courses. The project is innovative because it uses a widely available gaming environment, Minecraft, to examine spatial reasoning. Finding learning experiences which support students' spatial reasoning in an authentic and engaging way is a challenge in the field. This project will create a portable training system that can be easily deployed in middle grades (5th-7th grade) as a prototype for increasing students' spatial reasoning skills. The project will study gender differences in spatial reasoning and examine how learning experiences can be designed to develop spatial skills using Minecraft as a platform. The resources will incorporate hands-on learning and engage students in building virtual structures using spatial reasoning. The curriculum materials are being designed to be useful in other middle grades contexts.

The study is a design and development study that will design four training modules intended to improve spatial reasoning in the following areas: rotation, mental slicing, 2D to 3D transformation and perspective taking. The research questions are: (1) Does a Minecraft-based intervention that targets specific spatial reasoning tasks improve middle grade learners' spatial ability? (2) Does spatial skills growth differ by gender? The experimental design will compare the influence of the virtual spatial learning environment alone vs. the use of design challenges designed specifically for the spatial skills. The data collected will include assessments of spatial reasoning and feedback from teachers' who use the materials. The spatial skills measures will be administered as a pre-test, post-test, and six-month follow-up assessment to measure long term effects.

Learning in Places: Field Based Science in Early Childhood Education

This project aims to develop an innovative field-based science learning approach that will support the capacity of culturally diverse students in Grades K-3 to engage in complex ecological reasoning and related problem solving. To provide rich learning environments, outdoor learning gardens will be created in which students, teachers, garden educators, and families participate in activities that facilitate the investigation of tangible ecological challenges such as water capture and food security.

Lead Organization(s): 
Award Number: 
1720578
Funding Period: 
Sat, 07/01/2017 to Wed, 06/30/2021
Full Description: 

Recent evidence suggests that reasoning and making decisions about ecological systems is a cultural activity that impacts participation in the core scientific practices of observation, evidence use, and claims making. This project aims to develop an innovative field-based science learning approach that will support the capacity of culturally diverse students in Grades K-3 to engage in complex ecological reasoning and related problem solving. To provide rich learning environments, outdoor learning gardens will be created in which students, teachers, garden educators, and families participate in activities that facilitate the investigation of tangible ecological challenges such as water capture and food security.

Using design-based research, the project team will collaborate with teachers, parents of participating students, and community garden educators to collectively design and develop four key components: 1) field-based curricular units for K-3 classrooms; 2) a model of family and community engagement that strengthens cultural relevance and equity in field-based science learning; 3) a pilot program of teacher professional development that informs future scaling efforts; and 4) research that unpacks student learning and teacher instructional practices that support children?s complex ecological reasoning and the cultural contexts of such knowledge. Data sources will include video, interviews, surveys, and student-created artifacts. A mixed-methods approach will be used to produce research findings at multiple levels including: student learning about complex ecological phenomena and field-based practices; classroom-level learning and high-leverage teaching practices in model units at each grade level; impacts of co-design on professional learning and practice; and family and community organizations learning and engagement in field-based science education. The project will be carried out by a research-practice-community partnership in Seattle, Washington that includes learning scientists (University of Washington), K-3 teachers and school administrators (Seattle Public Schools), garden educators (Seattle Tilth), and parents of participating students. In total, eight schools, 32 teachers, 800 students, and 32 families are expected to participate.

Pages

Subscribe to STEM Practices