STEM Practices

Pandemic Learning Loss in U.S. High Schools: A National Examination of Student Experiences

As a result of the COVID-19 pandemic, schools across much of the U.S. have been closed since mid-March of 2020 and many students have been attempting to continue their education away from schools. Student experiences across the country are likely to be highly variable depending on a variety of factors at the individual, home, school, district, and state levels. This project will use two, nationally representative, existing databases of high school students to study their experiences in STEM education during the COVID-19 pandemic.

Lead Organization(s): 
Award Number: 
2030436
Funding Period: 
Fri, 05/15/2020 to Fri, 04/30/2021
Full Description: 

As a result of the COVID-19 pandemic, schools across much of the U.S. have been closed since mid-March of 2020 and many students have been attempting to continue their education away from schools. Student experiences across the country are likely to be highly variable depending on a variety of factors at the individual, home, school, district, and state levels. This project will use two, nationally representative, existing databases of high school students to study their experiences in STEM education during the COVID-19 pandemic. The study intends to ascertain whether students are taking STEM courses in high school, the nature of the changes made to the courses, and their plans for the fall. The researchers will identify the electronic learning platforms in use, and other modifications made to STEM experiences in formal and informal settings. The study is particularly interested in finding patterns of inequities for students in various demographic groups underserved in STEM and who may be most likely to be affected by a hiatus in formal education.

This study will collect data using the AmeriSpeak Teen Panel of approximately 2,000 students aged 13 to 17 and the Infinite Campus Student Information System with a sample of approximately 2.5 million high school students. The data sets allow for relevant comparisons of student experiences prior to and during the COVID-19 pandemic and offer unique perspectives with nationally representative samples of U.S. high school students. New data collection will focus on formal and informal STEM learning opportunities, engagement, STEM course taking, the nature and frequency of instruction, interactions with teachers, interest in STEM, and career aspirations. Weighted data will be analyzed using descriptive statistics and within and between district analysis will be conducted to assess group differences. Estimates of between group pandemic learning loss will be provided with attention to demographic factors.

This RAPID award is made by the DRK-12 program in the Division of Research on Learning. The Discovery Research PreK-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics by preK-12 students and teachers, through the research and development of new innovations and approaches. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for the projects.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

 

 

 

 

Comparing the Efficacy of Collaborative Professional Development Formats for Improving Student Outcomes of a Student-Teacher-Scientist Partnership Program

The goal of this project is to study how the integration of an online curriculum, scientist mentoring of students, and professional development for both teachers and scientist mentors can improve student outcomes. In this project, teachers and scientist mentors will engage collaboratively in a professional development module which focuses on photosynthesis and cellular respiration and is an example of a student-teacher-scientist partnership.

Lead Organization(s): 
Award Number: 
2010556
Funding Period: 
Tue, 09/01/2020 to Sun, 08/31/2025
Full Description: 

Science classrooms in the U.S. today increasingly expect students to engage in the practices of science in a way that help them form a deeper understanding of disciplinary core ideas and the practices by which science is done. To do this, students should learn how scientists work and communicate. It also calls for changes in how teachers teach science, which in turn creates a need for high-quality professional development so they can be more effective in the classroom. Professional scientists can also benefit from training preparing them to support teachers, motivate students, and model for students how scientists think and work. Preparing teachers and scientists through collaborative professional development can help maximize the impact they can have on student outcomes. To have the broadest impact, such professional development should be cost-effective and available to teachers in rural or underserved areas. This project focuses on high school life science (biology) teachers and their students. It will make use of an online mentoring platform, a student-teacher-scientist partnership program established in 2005. That study found that implementing in combination with high-quality, in-person collaborative teacher/scientist professional development resulted in positive and statistically significant effects on student achievement and attitudes versus business-as-usual methods of teaching the same science content. This project has two main components: 1) a replication study to determine if findings of the previous successful study hold true; and 2) adding an online format for delivering collaborative professional development to teachers and scientists enabling one to compare the effectiveness of online professional development and in-person professional development delivery formats for improving student outcomes.

The goal of this project is to study how the integration of an online curriculum, scientist mentoring of students, and professional development for both teachers and scientist mentors can improve student outcomes. In this project, teachers and scientist mentors will engage collaboratively in a professional development module which focuses on photosynthesis and cellular respiration and is an example of a student-teacher-scientist partnership. Teachers will use their training to teach the curriculum to their students with students receiving mentoring from the scientists through an online platform. Evaluation will examine whether this curriculum, professional development, and mentoring by scientists will improve student achievement on science content and attitudes toward scientists. The project will use mixed-methods approaches to explore potential factors underlying efficacy differences between in-person and online professional development. An important component of this project is comparing in-person professional development to an online delivery of professional development, which can be more cost-effective and accessible by teachers, especially those in rural and underserved areas.

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering, and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models, and tools. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

Leveraging Simulations in Preservice Preparation to Improve Mathematics Teaching for Students with Disabilities (Collaborative Research: Jones)

This project aims to support the mathematics learning of students with disabilities through the development and use of mixed reality simulations for elementary mathematics teacher preparation. These simulations represent low-stakes opportunities for preservice teachers to practice research-based instructional strategies to support mathematics learning, and to receive feedback on their practices.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
2010298
Funding Period: 
Fri, 05/01/2020 to Tue, 04/30/2024
Full Description: 

The preparation of general education teachers to support the mathematics learning of students with disabilities is critical, as students with disabilities are overrepresented in the lower ranks of mathematics achievement. This project aims to address this need in the context of elementary mathematics teacher preparation through the development and use of mixed reality simulations. These simulations represent low-stakes opportunities for preservice teachers to practice research-based instructional strategies to support mathematics learning, and to receive feedback on their practices. Learning units that use the simulations will focus on two high leverage practices: teacher modeling of self-monitoring and reflection strategies during problem solving and using strategy instruction to teach students to support problem solving. These high-leverage teaching practices will support teachers engaging all students, including students with disabilities, in conceptually sophisticated mathematics in which students are treated as sense-makers and empowered to do mathematics in culturally meaningful ways.

The project work encompasses three primary aims. The first aim is to develop a consensus around shared definitions of high-leverage practices across the mathematics education and special education communities. To accomplish this goal, the project will convene a series of consensus-building panels with mathematics education and special education experts to develop shared definitions of the two targeted high leverage practices. This work will include engaging with current research, group discussion, and production of documents with specifications for the practices. The second aim is to develop learning units for elementary mathematics methods courses grounded in mixed reality simulation. These simulations will allow teacher candidates to enact the high leverage practices with simulated students and to receive coaching on their practice from the research team. The impact of this work will be assessed through the analysis of interviews with teacher educators implementing the units and observations and artifacts from the implementations. The third aim will be to assess the effectiveness of the simulations on teacher candidates? practices and beliefs through small-scaled randomized control trials. Teacher candidates will be randomly assigned to conditions that address the practices and make use of simulations, and a business as usual condition focused on lesson planning, student assessment, and small group discussions of the high leverage practices. The impact of the work will be assessed through the analysis of baseline and exit simulations, measures of teacher self-efficacy for teaching students with disabilities, and observations of classroom teaching in their clinical placement settings.

Responding to an Emerging Epidemic through Science Education

This research project will produce curricular materials designed to help students learn about viral epidemics as both a scientific and social issue. It will engage students in scientific modeling of the epidemic and in critical analyses of media and public health information about the virus. This approach helps students connect their classroom learning experiences with their lives beyond school, a key characteristic of science literacy.

Partner Organization(s): 
Award Number: 
2023088
Funding Period: 
Sun, 03/01/2020 to Sun, 02/28/2021
Full Description: 

At this moment, there is global concern about the coronavirus disease 2019 (COVID-19) and its potential to become an epidemic in the U.S. and other countries. Reports of past studies on student understanding of epidemics and how they are taught in school indicate that teachers are reticent to teach the material because the science is unclear given the emerging nature of evidence, or because they don?t understand it well themselves. Curricular resources are limited. Consequently, many students are left on their own to grapple with a potential public health emergency that could affect them and their families. The problem is further complicated by misinformation that may be spread through social media. There is less public understanding about the science of the virus and how it spreads; the risk of being infected; treatment, or, the severity of the illness. This research project will produce curricular materials designed to help students learn about viral epidemics as both a scientific and social issue. It will engage students in scientific modeling of the epidemic and in critical analyses of media and public health information about the virus. This approach helps students connect their classroom learning experiences with their lives beyond school, a key characteristic of science literacy. This project is an example of how science education can be both engaging and relevant.

Researchers at the University of North Carolina and the University of Missouri have been studying how to teach about issues at the crossroads of science and social concerns such as community health; they have developed a framework to build curriculum materials focused on student learning of such complex issues through modeling and inquiry. For this study on the coronavirus disease 2019 (COVID-19); first, the researchers will study student responses to the epidemic in real time, collecting data on student initial understandings and concerns. Then, using this information, they will work with 7 high school science teachers familiar with their framework to build a prototype curriculum unit, and test it in classrooms in 4 high schools selected for their socio-economic and ethnic/racial diversity. The study will gather data on student interest in the epidemic, as well as how students access information about it through various forms of media, and how they vet news reports and social media. The researchers will also use pre- and post-test data to assess student learning. After this initial enactment of the curriculum materials developed to teach about the epidemic, researchers and teachers will revise the curriculum materials to make them more effective. The final products will be a curriculum unit that will be readily available and modifiable for teaching and learning about future epidemics, as well as greater understanding about how students deal with vast amounts of information about societal issues that affect their immediate lives and the science behind them.

CAREER: Implementing Mathematical Modeling for Emergent Bilinguals

This project will support teacher capacity for implementing mathematical modeling lessons by engaging teachers in co-planning and co-teaching with researchers skilled in Emergent Bilingual (EB) mathematics instruction. The outcomes of this project will be a framework for teaching mathematical modeling to EB students, teacher professional development materials that can be used widely to support EB mathematics teachers, and a massive open online course (MOOC) for teachers to support their continued learning about teaching mathematics modeling to EB students.

Lead Organization(s): 
Award Number: 
1941668
Funding Period: 
Tue, 09/01/2020 to Sun, 08/31/2025
Full Description: 

This project supports secondary mathematics teachers in teaching mathematical modeling practices to an Emergent Bilingual (EB) population. EB students in linguistically diverse mathematics classrooms are frequently limited to procedural, rote instruction, despite research-based recommendations that suggest that EBs' mathematical and linguistic proficiency can benefit from engaging in complex mathematical tasks based on real-life situations. The project will support teacher capacity for implementing mathematical modeling lessons by engaging teachers in co-planning and co-teaching with researchers skilled in EB mathematics instruction. The project will collect information about the quality of mathematics instruction in modeling lessons, what students learn, and how teachers changed in how they position EB students as knowers and doers of mathematics. The outcomes of this project will be a framework for teaching mathematical modeling to EB students, teacher professional development materials that can be used widely to support EB mathematics teachers, and a massive open online course (MOOC) for teachers to support their continued learning about teaching mathematics modeling to EB students.

The project draws on three important constructs related to teaching mathematics to emergent bilingual (EB) students: research on the mathematics education of EB students; research on mathematical modeling; and positioning theory. Related to mathematics education of EB students, the project supports teachers in enacting high-quality instruction that incldues high cognitive demand tasks, encourages EBs to engage in and explain their problem solving process, and complements that work with linguistic and contextual supports that support EB students' entry into the tasks. Related to mathematical modeling, the project makes use of the conceptualization of modeling as a vehicle for content (as compared to mathematics content of its own), and envisions the use of modeling practices as particularly supportive of EB students' learning of algebra. In particular, the modeling-as-a-vehicle stance invites teachers to engage students in tasks that contain multiple mathematical representations, which has the potential to both build students' conceptual understandings of algebra and to strengthen EBs' language and communication skills in the context of mathematics. With respect to positioning theory, the project seeks to disrupt the finding that secondary mathematics teachers tend underestimate EB students' mathematical abilities due to their English proficiency standards, causing them to choose lower cognitive demand tasks for these students against established research-based recommendations. The project team will engage EB algebra and pre-algebra teachers in Des Moines Public schools in co-planning and co-teaching lessons using mathematical modeling practice. This co-planning and co-teaching activity constitutes in-situ professional development for teachers. Co-planning sessions, co-taught lessons, and regular teacher interviews will be recorded and analyzed for quality of instruction and changes in teacher positioning of EB students. The research team and teachers will co-analyze student learning data from observations and district-administered standardized assessments to better understand the impact of the modeling lessons on students' algebra learning and achievement. Eight teachers will participate in the work over the life of the project, each supporting EB classes of approximately 20 students per teacher. The outcomes of these analyses will guide the development fo a mathematical modeling framework for teaching EBs, teacher professional development materials made available for similar work in other schools and districts, and a massive open online course designed for teachers to develop their skills for teaching secondary mathematics to EB students.

CAREER: Exploring Teacher Noticing of Students' Multimodal Algebraic Thinking

This project investigates and expands teachers' learning to notice in two important ways. First, the research expands beyond teachers' noticing of written and verbal thinking to attend to gesture and other aspects of embodied and multimodal thinking. Second, the project focuses on algebraic thinking and seeks specifically to understand how teacher noticing relates to the content of algebra. Bringing together multimodal thinking and the mathematical ideas in algebra has the potential to support teachers in providing broader access to algebraic thinking for more students.

Award Number: 
1942580
Funding Period: 
Mon, 06/01/2020 to Sat, 05/31/2025
Full Description: 

Effective teachers of mathematics attend to and respond to the substance of students' thinking in supporting classroom learning. Teacher professional development programs have supported teachers in learning to notice students' mathematical thinking and using that noticing to make instructional decisions in the classroom. This project investigates and expands teachers' learning to notice in two important ways. First, the research expands beyond teachers' noticing of written and verbal thinking to attend to gesture and other aspects of embodied and multimodal thinking. Second, the project focuses on algebraic thinking and seeks specifically to understand how teacher noticing relates to the content of algebra. Bringing together multimodal thinking and the mathematical ideas in algebra has the potential to support teachers in providing broader access to algebraic thinking for more students.

To study teacher noticing of multimodal algebraic thinking, this project will facilitate video club sessions in which teachers examine and annotate classroom video. The video will allow text-based and visual annotation of the videos to obtain rich portraits of the thinking that teachers notice as they examine algebra-related middle school practice. The research team will create a video library focused on three main algebraic thinking areas: equality, functional thinking, and proportional reasoning. Clips will be chosen that feature multimodal student thinking about these content areas, and provide moments that would be fruitful for advancing student thinking. Two cohorts of preservice teachers will engage in year-long video clubs using this video library, annotate videos using an advanced technological tool, and engage in reflective interviews about their noticing practices. Follow-up classroom observations will be conducted to see how teachers then notice multimodal algebraic thinking in their classrooms. Materials to conduct the video clubs in other contexts and the curated video library will be made available, along with analyses of the teacher learning that resulted from their implementation.

CAREER: Supporting Model Based Inference as an Integrated Effort Between Mathematics and Science

This project will design opportunities for mathematics and science teachers to coordinate their instruction to support a more coherent approach to teaching statistical model-based inference in middle school. It will prepare teachers to help more students develop a deeper understanding of ideas and practices related to measurement, data, variability, and inference and to use these tools to generate knowledge about the natural world.

Award Number: 
1942770
Funding Period: 
Sat, 02/01/2020 to Fri, 01/31/2025
Full Description: 

This project will design opportunities for mathematics and science teachers to coordinate their instruction to support a more coherent approach to teaching statistical model-based inference in middle school. It will prepare teachers to help more students develop a deeper understanding of ideas and practices related to measurement, data, variability, and inference. Since there is little research to show how to productively coordinate learning experiences across disciplinary boundaries of mathematics and science education, this project will address this gap by: (1) creating design principles for integrating instruction about statistical model-based inference in middle grades that coordinates data modeling instruction in mathematics classes with ecology instruction in science classes; (2) generating longitudinal (2 years) evidence about how mathematical and scientific ideas co-develop as students make use of increasingly sophisticated modeling and inferential practices; and (3) designing four integrated units that coordinate instruction across mathematics and science classes in 6th and 7th grade to support statistical model-based inference.

This project will use a multi-phase design-based research approach that will begin by observing teachers' current practices related to statistical model-based inference. Information from this phase will help guide researchers, mathematics teachers, and science teachers in co-designing units that integrate data modeling instruction in mathematics classes with ecological investigations in science classes. This project will directly observe students' thinking and learning across 6th and 7th grades through sample classroom lessons, written assessment items, and interviews. Data from these aspects of the study will generate evidence about how students make use of mathematical ideas in science class and how their ecological investigations in science class provoke a need for new mathematical tools to make inferences. The resulting model will integrate mathematics and science learning in productive ways that are sensitive to both specific disciplinary learning goals and the ways that these ideas and practices can provide a better approximation for students to knowledge generating practices in STEM disciplines.

CAREER: Developing Elementary Preservice Teachers' Understandings and Abilities to Support Emerging Bilingual Students Scientific Sensemaking

This project will study ways to improve classroom instruction grounded in science practices to address inequities in science education for emerging bilingual students. The project will create research-based resources for teacher educators that focus on developing preservice elementary teachers' understanding and abilities to support emerging bilingual students' engagement in science practices.

Lead Organization(s): 
Award Number: 
1942912
Funding Period: 
Wed, 01/15/2020 to Tue, 12/31/2024
Full Description: 

This project will study ways to improve classroom instruction grounded in science practices to address inequities in science education for emerging bilingual students. Currently, many elementary school teachers are unfamiliar with science practices and are unprepared to teach emerging bilingual students since they never received training in either area. This project will address this lack of training and create research-based resources for teacher educators that focus on developing preservice elementary teachers' understanding and abilities to support emerging bilingual students' engagement in science practices. The study will be guided by the following objectives, which are to research: (1) the understandings of exemplary elementary teachers around science, language, and emerging bilingual students, and the relationship between these understandings and their instructional practices for supporting student sensemaking; (2) preservice teachers' understandings and practices related to supporting emerging bilingual students' sensemaking; (3) the development of an elementary science methods course, and educator resources, that support teacher learning about the role of language in science practices and approaches for supporting emerging bilingual students' sensemaking; and (4) the impact of this course, and its teacher educator resources, on preservice teachers' understandings and instructional practices. With little prior research having looked at the intersection of science and language learning, this project will advance knowledge in this regard.

Through a mixed-methods design, this project will investigate interrelated aspects of teacher understandings, teacher practice, and teacher learning around supporting emerging bilingual students' scientific sensemaking. Phase 1 of the project includes examining the instructional approaches around science practices of exemplary elementary school teachers that work in different types of school contexts with emerging bilingual students. Such strategies will go beyond traditional subject-matter knowledge and skills to include teacher encouragement of students using linguistic and nonlinguistic modes for communicating ideas; development of a deeper understanding of natural scientific phenomena; and engagement with and valuing of students' families, communities, and lived experiences. These combined efforts will capture and illustrate compelling examples of possible instantiations of engagement in science practices while being mindful of and responsive to emerging bilingual students' language assets, needs, and English development. Findings from Phase 1 will be used for Phase 2 of this project, which focuses on iteratively designing and analyzing a science methods course and resources for preservice teachers' pedagogical development across science and language learning.

CAREER: Spreading Computational Literacy Equitably via Integration of Computing in Preservice Teacher Preparation

This project will study the effect of integrating computing into preservice teacher programs. The project will use design-based research to explore how to connect computing concepts and integration activities to teachers' subject area knowledge and teaching practice, and which computing concepts are most valuable for general computational literacy.

Lead Organization(s): 
Award Number: 
1941642
Funding Period: 
Wed, 07/01/2020 to Mon, 06/30/2025
Full Description: 

Understanding and creating computer-powered solutions to professional and personal problems enables people to be safe, resourceful, and inventive in the technology-infused world. To empower society, K-12 education is rapidly changing to spread computational literacy. To spread literacy equitably, schools must give all students opportunities to understand and design computing solutions. However, school schedules are already packed with required coursework, and most teachers graduated from programs that did not offer computer science courses. To spread computational literacy within the K-12 system, this project will integrate computing into all preservice teacher programs at Georgia State University. This approach enables all teachers, regardless of primary discipline or grade band, to introduce their students to authentic computing solutions within their discipline and use these solutions as powerful tools for teaching disciplinary content and practices. In addition, this approach ensures equity because all preservice teachers will learn to use computing tools through their regular coursework, rather than a self-selected group that chooses to engage in elective courses or professional development on the topic. The project will also require preservice teachers to use computing-integrated activities in their student teaching experiences. This requirement helps teachers gain the confidence to use the activities in their future classrooms and immediately benefits students in the Atlanta area, who are primarily from groups that are underrepresented in computing, including women, people of color and those who are from low-income families.

This project will study the effect of computing integration in preservice teacher programs on computational literacy. Preservice teacher programs, like K-12 school schedules, are loaded with subject area, pedagogy, and licensure requirements. Therefore, research needs to examine the most sustainable methods for integrating computing into these programs. The proposed project will use design-based research to explore 1) how to connect computing concepts and integration activities to teachers' subject area knowledge and teaching practice, and 2) which computing concepts are most valuable for general computational literacy. Because computational literacy is a relatively new literacy, the computing education community still debates which concepts are foundational for all citizens. By studying computing integration in a range of grade bands and subject areas, this project will explore which computing concepts are applicable in a wide range of subjects. These research activities will feed directly into the teaching objective of this project ? to provide computing education and computational literacy to all preservice teachers. This project will prepare about 1500 preservice teachers (more than half of them will be women) across all grades and subject areas who can teach computing integrated activities.

 

Teaching Science Outdoors: A Next Generation Approach for Advancing Elementary Science Teaching in Urban Communities

This project project is designed to enhance the capacity of elementary teachers in high-poverty urban communities for enacting Next Generation Science Standards (NGSS)-aligned science approaches using the outdoors as part of their classroom. The goal of the project is to advance elementary teachers' pedagogical practices and determine how this affects cognitive and non-cognitive learning outcomes of their students, particularly those who are traditionally marginalized in science classrooms.

Lead Organization(s): 
Award Number: 
1907506
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Full Description: 

This project addresses a long-standing challenge in science education centered on providing meaningful science education opportunities to students living in communities of high poverty and attending under-resourced elementary schools. These students are significantly less likely to receive high-quality science learning opportunities and to be encouraged to engage in (rather than simply learn about) science. This Michigan State University research project is designed to enhance the capacity of elementary teachers in high-poverty urban communities for enacting Next Generation Science Standards (NGSS)-aligned science approaches using the outdoors as part of their classroom. It builds on and advances prior outdoor education work for the current context of science education that requires elementary teachers to engage students in making sense of phenomena using next generation science and engineering practices. The goal of this project is to advance elementary teachers' pedagogical practices and determine how this affects cognitive and non-cognitive learning outcomes of their students, particularly those who are traditionally marginalized in science classrooms. It also will advance knowledge on ways to bridge informal and formal learning environments. To achieve these goals, the project will develop, enact and study a program that involves a scaffolded series of summer professional development sessions focused on outdoor learning and school year follow-up meetings and classroom-based coaching for elementary teachers and informal educators from two high-need districts.

Design-based research will be utilized to: 1) foster teacher practices and study how these develop over time, 2) work with teachers to measure student outcomes, and 3) determine what aspects of this formal/informal approach are productive, measures of student engagement and student learning artifacts--will be analyzed. The project will serve as a model for developing partnerships between informal science organizations, educators, and K-12 programs. Revised measures and outcomes of teacher practices and student learning; outdoor-focused lesson plans; cases illustrating how elementary teachers develop and enact NGSS-aligned outdoor lessons; a revised informal-formal theoretical model; and information about dissemination of products including facilitation guidelines and coaching approaches will be developed and disseminated.

Pages

Subscribe to STEM Practices