Teacher Content Knowledge

PlantingScience: Digging Deeper Together - A Model for Collaborative Teacher/Scientist Professional Development

This project will design, develop, and test a new professional development (PD) model for high school biology teachers that focuses on plant biology, an area of biology that teachers feel less prepared to teach. The new PD model will bring teachers and scientists together, in-person and online, to guide students in conducting authentic science investigations and to reflect on instructional practices and student learning.

Lead Organization(s): 
Award Number: 
1502892
Funding Period: 
Thu, 10/01/2015 to Mon, 09/30/2019
Full Description: 

This project will design, develop, and test a new professional development (PD) model for high school biology teachers that focuses on plant biology, an area of biology that teachers feel less prepared to teach. The new PD model will bring teachers and scientists together, in-person and online, to guide students in conducting authentic science investigations and to reflect on instructional practices and student learning. The project will also develop and test the outcomes of a summer institute for teachers and a website that will support the online mentoring of students and the professional development of teachers. Outcomes of the project will include the development of a facilitation guide for the teacher professional development model, a website to support student mentoring and teacher professional development, a series of resources for teachers and scientists to use in working with students, and empirical evidence of the success of the new professional development model.

This full research and development project will employ a pre-test/post-test control group design to test the efficacy of a professional development model for high school biology teachers. The professional development model is grounded in a theory of action based on the premise that when teachers are engaged with scientists and students in a technology-enabled learning community, students will demonstrate higher levels of achievement than those using more traditional instructional materials and methodologies. The means of post-intervention outcome measures will be compared across treatment and comparison groups in a cluster-randomized trial where teachers will be randomly assigned to treatment groups. The study will recruit a nation-wide sample to ensure that participants represent a wide array of geographic and demographic contexts, with preference given to Title 1 schools. The research questions are: a) To what extent does participation in the Digging Deeper community of teachers and scientists affect teacher knowledge and practices? b) To what extent does participation in the Digging Deeper community of teachers and scientists affect scientists? quality of mentorship and teaching? And c) To what extent does student use of the online program and participation in the learning community with scientist mentors affect student learning? Instruments will be developed or adapted to measure relevant student and teacher knowledge, student motivation, and teacher practices. Computer-mediated discourse analysis will be used over the course of the study to track online interactions among students, teachers, and science mentors.

Building Assessment Items and Instructional Tasks to Build Intercommunity Capacity to Develop Teachers' Mathematical Knowledge for Teaching

The infrastructure to improve mathematics education in the US requires building human resources in mathematics and mathematics education into a professional community that can respond to the critical needs in the field. This project seeks to build a professional community with shared understanding of the specialized content knowledge (SCK) - the special forms and ways of reasoning about mathematical knowledge used in teaching (MKT). 

Lead Organization(s): 
Award Number: 
1502778
Funding Period: 
Tue, 09/01/2015 to Sat, 08/31/2019
Full Description: 

The infrastructure to improve mathematics education in the US requires building human resources in mathematics and mathematics education into a professional community that can respond to the critical needs in the field. This project seeks to build a professional community with shared understanding of the specialized content knowledge (SCK) - the special forms and ways of reasoning about mathematical knowledge used in teaching (MKT). This community will help increase the capacity for further research and development on teachers' SCK in mathematics, which has been shown to relate to student achievement. Building on the professional community's shared knowledge, the project will also work to collaboratively develop an item bank of MKT/SCK items and tasks using the platform developed by the Illustrative Mathematics group for similar task and item development for K-12 students. Better measures, with a larger item bank, will help support both the learning and assessment of teachers' MKT/SCK.

Based on theories of communities of practice, this project will bring together mathematicians and mathematics educators to build a professional community with a shared understanding of the SCK in mathematics through engaging in efforts to develop items to measure SCK and the development of a task bank. Based on the "item camps" they engaged with to develop prior measures, the project will host twelve 4-day camps with varying themes for pairs of faculty and teachers or graduate students, ensuring a mix of mathematicians and educators. This work will lead to a certification for MKT/SCK. They will also develop approximately 60 items and have a mechanism for the future review and publishing of items. Using case-study methodologies, the project will study the development of these partnerships and the professional communities within and across the camps.

Mathematical and Computational Methods for Planning a Sustainable Future II

The project will develop modules for grades 9-12 that integrate mathematics, computing and science in sustainability contexts. The project materials also include information about STEM careers in sustainability to increase the relevancy of the content for students and broaden their understanding of STEM workforce opportunities. It uses summer workshops to pilot test materials and online support and field testing in four states. 

Lead Organization(s): 
Award Number: 
1503414
Funding Period: 
Wed, 07/15/2015 to Sun, 06/30/2019
Full Description: 

The project will develop modules for grades 9-12 that integrate mathematics, computing and science in sustainability contexts. The project materials also include information about STEM careers in sustainability to increase the relevancy of the content for students and broaden their understanding of STEM workforce opportunities. It uses summer workshops to pilot test materials and online support and field testing in four states. Outcomes include the modules, tested and revised; strategies for transfer of learning embedded in the modules; and a compendium of green jobs, explicitly related to the modules. The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. The STEM+Computing Partnerships (STEM+C) Program is a joint effort between the Directorate for Education & Human Resources (EHR) and Directorate Computer & Information Science & Engineering (CISE). Reflecting the increasing role of computational approaches in learning across the STEM disciplines, STEM+C supports research and development efforts that integrate computing within one or more STEM disciplines and/or integrate STEM learning in computer science; 2) advance multidisciplinary, collaborative approaches for integrating computing in STEM in and out of school, and 3) build capacity in K-12 computing education through foundational research and focused teacher preparation

The project is a full design and development project in the learning strand of DRK-12. The goal is to enhance transfer of knowledge in mathematics and science via sustainability tasks with an emphasis on mathematical and scientific practices. The research questions focus on how conceptual representations and the modules support students' learning and especially transfer to novel problems. The project design integrates the research with the curriculum development. It includes a mixed methods data collection and analysis from teachers and students (e.g., interviews, content exams, focus groups, implementation logs). Assessment of student work includes both short, focused problems in the content area and longer project-based tasks providing a range of assessments of student learning. The investigators will develop a rubric for scoring student work on the tasks. The curriculum design process includes iterations of the modules over time with feedback from teachers and using data collected from the implementation.

Quality Urban Ecology Science Teaching for Diverse Learners

This project will examine the relationship between teacher professional development associated with newly developed modules in urban ecology and the achievement and engagement of long-term English learners (LTEL).  Existing Urban Ecology learning modules will be enhanced to accommodate the needs of LTELs, and teachers will participate in professional development aimed at using the new materials to effectively integrate academic science discourse and literacy development for LTELs.

Lead Organization(s): 
Award Number: 
1503519
Funding Period: 
Sat, 08/01/2015 to Fri, 05/31/2019
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. This exploratory research project will examine the relationship between teacher professional development associated with newly developed modules in urban ecology and the achievement and engagement of long-term English learners (LTEL). Participants in the project will include students in grades 4-8 in a large urban school district, elementary school teachers, middle school science teachers, and middle school teachers of English language arts. Existing Urban Ecology learning modules will be enhanced to accommodate the needs of LTELs, and teachers will participate in professional development aimed at using the new materials to effectively integrate academic science discourse and literacy development for LTELs.

The project will develop two enhanced urban ecology modules (47 lessons) for English learners in grades 4-8; science language and literacy assessments for English language learners (ELLs); an ELL STEM career awareness inventory; an urban ecology for ELLs teacher knowledge scale, and an urban ecology for ELLs pedagogy observation protocol. The materials will be tested with a stratified random sample of students identified by achievement level (low, medium, and high) and linguistic background (mainstream, LTEL, and "at risk" of becoming LTEL). A mixed-methods research design will be used to test the hypothesis that the quantity and quality of LTEL science language and literacy achievement will increase as a result of teacher participation in implementing the newly developed transdisciplinary framework for Urban Ecology for English Learners.

Collaborative Math: Creating Sustainable Excellence in Mathematics for Head Start Programs

This project will adapt and study a promising and replicable teacher professional development (PD) intervention, called Collaborative Math (CM), for use in early childhood programs. Prepared as generalists, preschool teachers typically acquire less math knowledge in pre-service training than their colleagues in upper grades, which reduces their effectiveness in teaching math. To address teacher PD needs, the project will simultaneously develop teacher content knowledge, confidence, and classroom practice by using a whole teacher approach.

Lead Organization(s): 
Award Number: 
1503486
Funding Period: 
Tue, 09/01/2015 to Sat, 08/31/2019
Full Description: 

This project was submitted to the Discovery Research K-12 (DRK-12) program that seeks to significantly enhance the learning and teaching of science, technology, engineering, and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models, and tools. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. The project will adapt and study a promising and replicable teacher professional development (PD) intervention, called Collaborative Math (CM), for use in early childhood programs. CM content will focus on nine topics emphasized in preschool mathematics, including sets, number sense, counting, number operations, pattern, measurement, data analysis, spatial relationships, and shape. These concepts are organized around Big Ideas familiar in early math, are developmentally appropriate and foundational to a young child's understanding of mathematics. The project addresses the urgent need for improving early math instruction for low-income children. Prepared as generalists, preschool teachers typically acquire less math knowledge in pre-service training than their colleagues in upper grades, which reduces their effectiveness in teaching math. To address teacher PD needs, the project will simultaneously develop teacher content knowledge, confidence, and classroom practice by using a whole teacher approach. Likewise, the project will involve teachers, teacher aides, and administrators through a whole school approach in PD, which research has shown is more effective than involving only lead teachers. Through several phases of development and research, the project will investigate the contributions of project components on increases in teacher knowledge and classroom practices, student math knowledge, and overall implementation. The project will impact approximately 200 Head Start (HS) teaching staff, better preparing them to provide quality early math experiences to more than 3,000 HS children during the project period. Upon the completion of the project, a range of well-tested CM materials such as resource books and teaching videos will be widely available for early math PD use. Assessment tools that look at math knowledge, attitudes, and teacher practice will also be available. 

The project builds on Erikson Institute research and development work in fields of early math PD and curriculum. Over a 4-year span, project development and research will be implemented in 4 phases: (1) adapting the existing CM and research measures for HS context; (2) conducting a limited field study of revised CM in terms of fidelity and director, teacher/aide, and student outcomes, and study of business as usual (BAU) comparison groups; (3) a study of the promise of the intervention promise with the phase 3 BAU group (who offered baseline in phase 2) and (4) a test of the 2nd year sustainability intervention with phase 3 treatment group. The teacher and student measures are all published, frequently used measures in early childhood education and will be piloted and refined prior to full implementation. The project is a partnership between Erikson, SRI, and Chicago Head Start programs. Project research and resources will be widely disseminated to policy makers, researchers, and practitioners.

TRUmath and Lesson Study: Supporting Fundamental and Sustainable Improvement in High School Mathematics Teaching (Collaborative Research: Schoenfeld)

Given the changes in instructional practices needed to support high quality mathematics teaching and learning based on college and career readiness standards, school districts need to provide professional learning opportunities for teachers that support those changes. The project is based on the TRUmath framework and will build a coherent and scalable plan for providing these opportunities in high school mathematics departments, a traditionally difficult unit of organizational change.

Award Number: 
1503454
Funding Period: 
Wed, 07/01/2015 to Sun, 06/30/2019
Full Description: 

Given the changes in instructional practices needed to support high quality mathematics teaching and learning based on college and career readiness standards, school districts need to provide professional learning opportunities for teachers that support those changes. The project will build a coherent and scalable plan for providing these opportunities in high school mathematics departments, a traditionally difficult unit of organizational change. Based on the TRUmath framework, characterizing the five essential dimensions of powerful mathematics classrooms, the project brings together a focus on curricular materials that support teaching, Lesson Study protocols and materials, and a professional learning community-based professional development model. The project will design and revise professional development and coaching guides and lesson study mathematical resources built around the curricular materials. The project will study changes in instructional practice and impact on student learning. By documenting the supports used in the Oakland Unified School District where the research and development will be conducted, the resources can be used by other districts and in similar work by other research-practice partnerships.

This project hypothesizes that the quality of classroom instruction can be defined by five dimensions - quality of the mathematics; cognitive demand of the tasks; access to mathematics content in the classroom; student agency, authority, and identity; and uses of assessment. The project will use an iterative design process to develop and refine a suite of tool, including a conversation guide to support productive dialogue between teachers and coaches, support materials for building site-based professional learning materials, and formative assessment lessons using Lesson Study as a mechanism to enact reforms of these dimensions. The study will use a pre-post design and natural variation to student the relationships between these dimensions, changes in teachers' instructional practice, and student learning using hierarchical linear modeling with random intercept models with covariates. Qualitative of the changes in teachers' instructional practices will be based on coding of observations based on the TRUmath framework. The study will also use qualitative analysis techniques to identify themes from surveys and interviews on factors that promote or hinder the effectiveness of the intervention.

TRUmath and Lesson Study: Supporting Fundamental and Sustainable Improvement in High School Mathematics Teaching (Collaborative Research: Donovan)

Given the changes in instructional practices needed to support high quality mathematics teaching and learning based on college and career readiness standards, school districts need to provide professional learning opportunities for teachers that support those changes. The project is based on the TRUmath framework and will build a coherent and scalable plan for providing these opportunities in high school mathematics departments, a traditionally difficult unit of organizational change.

Award Number: 
1503342
Funding Period: 
Wed, 07/01/2015 to Sun, 06/30/2019
Full Description: 

Given the changes in instructional practices needed to support high quality mathematics teaching and learning based on college and career readiness standards, school districts need to provide professional learning opportunities for teachers that support those changes. The project will build a coherent and scalable plan for providing these opportunities in high school mathematics departments, a traditionally difficult unit of organizational change. Based on the TRUmath framework, characterizing the five essential dimensions of powerful mathematics classrooms, the project brings together a focus on curricular materials that support teaching, Lesson Study protocols and materials, and a professional learning community-based professional development model. The project will design and revise professional development and coaching guides and lesson study mathematical resources built around the curricular materials. The project will study changes in instructional practice and impact on student learning. By documenting the supports used in the Oakland Unified School District where the research and development will be conducted, the resources can be used by other districts and in similar work by other research-practice partnerships.

This project hypothesizes that the quality of classroom instruction can be defined by five dimensions - quality of the mathematics; cognitive demand of the tasks; access to mathematics content in the classroom; student agency, authority, and identity; and uses of assessment. The project will use an iterative design process to develop and refine a suite of tool, including a conversation guide to support productive dialogue between teachers and coaches, support materials for building site-based professional learning materials, and formative assessment lessons using Lesson Study as a mechanism to enact reforms of these dimensions. The study will use a pre-post design and natural variation to student the relationships between these dimensions, changes in teachers' instructional practice, and student learning using hierarchical linear modeling with random intercept models with covariates. Qualitative of the changes in teachers' instructional practices will be based on coding of observations based on the TRUmath framework. The study will also use qualitative analysis techniques to identify themes from surveys and interviews on factors that promote or hinder the effectiveness of the intervention.

Playing with the Data: Developing Digital Supports for Middle School Science Teachers using Game-based Formative Assessment

This project will use cycles of design-based research to build new knowledge about how to facilitate teachers' interpretation and use of digital game-based formative assessment data. The research will also inform the revision and expansion of Playfully, an existing, online data-reporting dashboard that can be used with multiple digital games.

Award Number: 
1503255
Funding Period: 
Wed, 07/01/2015 to Sat, 06/30/2018
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

This project will use cycles of design-based research to build new knowledge about how to facilitate teachers' interpretation and use of digital game-based formative assessment data. The research will also inform the revision and expansion of Playfully, an existing, online data-reporting dashboard that can be used with multiple digital games. The project is a collaboration between researchers at Education Development Center Inc.'s Center for Children and Technology (EDC|CCT) and the assessment and game development teams at GlassLab. The research and development teams will engage in a three-year partnership with 60 middle-grade science teachers working in diverse school settings in different parts of the country. The aim of the project is to refine an online formative assessment platform that utilizes data from a video game designed to teach argumentation at the middle school level. It provides rigorous research on the design features of data tools and associated materials available to teachers to inform their ongoing instruction (i.e., formative assessment tools) when using game-based platforms.

Dissemination of the results of this project will include practical, evidence-based suggestions for supporting middle school science teachers' use of digital games for assessment, and for the design and implementation of data dashboards. Key audiences include educational game designers, game-based assessment developers, formative assessment experts, and leaders in middle grade science teaching and learning.

Student-Adaptive Pedagogy for Elementary Teachers: Promoting Multiplicative and Fractional Reasoning to Improve Students' Preparedness for Middle School Mathematics

The project develops a teacher professional development intervention to support student-adaptive pedagogy for multiplicative and fractional reasoning. The idea is that classroom instruction should build on students' current conceptions and experiences. It focuses on students from urban, underserved and low-socioeconomic status populations who often fall behind in the elementary grades and are left underprepared for middle grades mathematics.

Lead Organization(s): 
Award Number: 
1503206
Funding Period: 
Wed, 07/15/2015 to Sun, 06/30/2019
Full Description: 

The project develops a teacher professional development intervention to support student-adaptive pedagogy for multiplicative and fractional reasoning. The idea is that classroom instruction should build on students' current conceptions and experiences. The context for the study is grades 3-5 teachers in Aurora Public Schools. It focuses on students from urban, underserved and low-socioeconomic status populations who often fall behind in the elementary grades and are left underprepared for middle grades mathematics. It includes a summer workshop and academic year follow-up including teacher collaboration. The project provides tools for capitalizing on successful, school-based research for promoting teachers' buy-in, adoption, and sustaining of student-adaptive pedagogy. The project also includes measurement of student understanding of the concepts. An extensive plan to share tools and resources for teachers and instructional coaches (scalable to district/state levels) and of research instruments and findings, will promote sharing project outcomes with a wide community of stakeholders (teachers, administrators, researchers, parents, policy makers) responsible for students' growth. This is a Full Design & Development project within the DRK-12 Program's Learning Strand. The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

The project aims to implement and study a professional development intervention designed to shift upper-elementary teachers' mathematics teaching toward a constructivist approach, called student-adaptive pedagogy (AdPed), which adapts teaching goals and activities based on students' conceptions and experiences. The project focuses on multiplicative and fractional reasoning--critical for students' success in key areas of middle school mathematics (e.g., ratio, proportion, and function). The project seeks to design an instrument for measuring teachers' implementation of AdPed, a clinical interview rubric for students' multiplicative reasoning and then an analysis of teachers' content knowledge and the implementation of AdPed following the professional development. The research design is rooted in an innovative, cohesive framework that integrates four research-based components: (i) a model of mathematics learning and knowing, (ii) models of progressions in students' multiplicative and fractional reasoning, (iii) a model of teaching (AdPed) to promote such learning, and (iv) a mathematics teacher development continuum. Capitalizing on successful preliminary efforts in the Denver Metro area to refine a PD intervention and student-adaptive tools that challenge and transform current practices, the project will first validate and test instruments to measure (a) teacher growth toward adaptive pedagogy and (b) students' growth in multiplicative reasoning. Using these new instruments, along with available measures, the project will then promote school-wide teacher professional development (grades 3-5) in multiple schools in an urban district with large underserved student populations and study the professional development benefits for teacher practices and student outcomes. The mixed methods study includes classroom-based data (e.g., video analysis, lesson observations, teacher interviews) and measures of students' multiplicative reasoning specifically and mathematical understanding generally.

Visual Access to Mathematics: Professional Development for Teachers of English Learners

This project addresses a critical need, developing professional development materials to address the teachers of ELLs. The project will create resources to help teachers build ELLs' mathematical proficiency through the design and development of professional development materials building on visual representations (VRs) for mathematical reasoning across a range of mathematical topics.

Award Number: 
1503057
Funding Period: 
Sat, 08/01/2015 to Fri, 07/31/2020
Full Description: 

The demands placed on mathematics teachers of all students have increased with the introduction of college and career readiness standards. At the same time, the mathematics achievement of English Language Learners (ELLs) lags behind that of their peers. This project addresses a critical need, developing professional development materials to address the teachers of ELLs. The project will create resources to help teachers build ELLs' mathematical proficiency through the design and development of professional development materials building on visual representations (VRs) for mathematical reasoning across a range of mathematical topics. The project will study how to enhance teachers' pedagogical content knowledge that is critical to fostering ELLs' mathematical problem solving and communication to help support fluency in using VRs among teachers and students. To broaden the participation of students who have traditionally not demonstrated high levels of achievement in mathematics, a critical underpinning to further success in the sciences and engineering, there will need to be greater support for teachers of these students using techniques that have been demonstrated to improve student learning. 

The project will use an iterative design and development process to develop a blended learning model of professional development on using VRs with a 30-hour face-to-face summer institute and sixteen 2-hour online learning sessions. Teachers and teacher-leaders will help support the development of the professional development materials. A cluster randomized control trial will study the piloting of the materials and their impact on teacher outcomes. Thirty middle schools from Massachusetts and Maine serving high numbers of ELLs, with approximately 120 teachers, will be randomly assigned to receive the treatment or control conditions. Using a two-level random intercepts hierarchical linear model, the study will explore the impact of participation in the professional development on teachers' mathematical knowledge for teaching and instructional practice. The pilot study will also explore the feasibility of delivering the professional development model more broadly. It builds on prior work that has shown efficacy in geometry, but expands the work beyond a single area in mathematics. At the same time, they will test the model for feasibility of broad implementation.


Project Videos

2019 STEM for All Video Showcase

Title: Designing PD for Math Educators of Students Who are ELs

Presenter(s): Peter Tierney-Fife, Pamela Buffington, Josephine Louie, Jill Neumayer Depiper, & Johannah Nikula

2016 STEM for All Video Showcase

Title: Visual Access to Mathematics: Supporting Teachers of ELs

Presenter(s): Johannah Nikula, Pam Buffington, Mark Driscoll & Peter Tierney-Fife


Pages

Subscribe to Teacher Content Knowledge