Teacher Content Knowledge

Formative Assessment in the Mathematics Classroom: Engaging Teachers and Students

This project is developing a two-year, intensive professional development model to build middle-grades mathematics teachers’ knowledge and implementation of formative assessment. Using a combination of institutes, classroom practice, and ongoing support through professional learning communities and web-based resources, this model helps teachers internalize and integrate a comprehensive understanding of formative assessment into daily practice.

Project Email: 
Award Number: 
0918438
Funding Period: 
Tue, 09/15/2009 to Tue, 08/31/2010
Project Evaluator: 
Cynthia Char
Full Description: 

Formative Assessment in the Mathematics Classroom: Engaging Teachers and Students (FACETS) 

This project is submitted as a full research and development project that addresses challenge #3, how can the ability of teachers to provide STEM education be enhanced?

The FACETS project will develop a 2-year, intensive professional development model to build middle grades mathematics teachers’ knowledge and implementation of formative assessment. Using a combination of institutes, classroom practice, and ongoing support through professional learning communities and web-based resources, this model will help teachers internalize and integrate a comprehensive understanding of formative assessment into daily practice. As part of the professional development model, we will create a variety of products:

  • a facilitator’s guide describing the components of the professional development model and suggestions for using the model to provide a professional development program,
  • cyberlearning products such as interactive forums and a vetted resource library, and
  • video and other materials for the professional development activities and resource library.

FACETS includes a formative research component centered on the following questions:

1. How do mathematics teachers’ knowledge and practice of formative assessment change as a result of participation in the proposed professional development?

2. What learning trajectory describes teachers’ learning about formative assessment, and what are common barriers to successful implementation?

Reports of research findings will include journal articles on teachers’ learning trajectory for formative assessment and common barriers to successful implementation faced by teachers.

Intellectual merit: Our field work, supported by existing research, has shown that math teachers have difficulty fully implementing formative assessment in their classroom. Existing professional development programs either present a comprehensive understanding without a focus on mathematics, or focus on mathematics but only emphasize some of the critical aspects needed to bring out the full potential of formative assessment. This project will develop a professional development model that a) presents a comprehensive understanding of formative assessment and b) focuses specifically on mathematics. Furthermore, this project proposes to contribute to the field of mathematics teacher education through a deeper insight into mathematics teachers’ learning and practice of formative assessment. This insight can be used by professional developers and teacher educators in mathematics to make decisions that help teachers progress more effectively in their learning. This project brings together a multi-disciplinary team with expertise in formative assessment, professional development, mathematics, mathematics education, and teacher education research.

Broader impacts: We anticipate that the professional development will have an immediate impact on participating teachers, and on their students, as they learn about and implement formative assessment in their classrooms. Individual districts and schools have expressed an interest in the FACETS professional development program. The New Hampshire State Department of Education also indicates support for statewide implementation. In addition, research results regarding teachers’ learning trajectories for formative assessment will be crucial to inform future professional development and teacher education programs, and to help teachers reflect on, and guide, their own learning. Data regarding the major barriers to teachers’ learning of formative assessment will also impact future professional development by identifying issues needing additional focus, as will data regarding the effect on those barriers of factors such as teaching experience and mathematical knowledge for teaching. Finally, as there is a paucity of video and other examples of formative assessment in mathematics classrooms, the resource library will make widely available a sorely needed resource to teachers grappling with understanding and implementing formative assessment in mathematics classrooms in a practical way.

Supporting Staff Developers in the Implementation of Professional Development Programs to Improve Mathematics Education for Students with Disabilities

This project is (1) conducting a qualitative study on the way facilitators use Math for All (MFA), an NSF-supported set of professional development materials for teachers who teach elementary school students with disabilities; (2) developing resources based on that study for teacher leaders and other facilitators of professional development; and (3) conducting fieldtests of the resources to examine their usefulness and impact.

Award Number: 
0822313
Funding Period: 
Mon, 09/01/2008 to Fri, 08/31/2012
Project Evaluator: 
Teresa Duncan
Full Description: 

 

An Examination of the Impact of Teachers' Domain as a Professional Development Tool on Teacher Knowledge and Student Achievement in Biology

Using an experimental design, this project examines the effects of online professional development courses on high school biology teachers' content and pedagogical knowledge, and on their students' knowledge. The project is testing the impact of using digital resouces and is using hierarchal linear modeling techniques to analyze data. It will contribute to the knowledge base of what impacts student achievement by testing the efficacy of online professional development for science teachers.

Award Number: 
0732186
Funding Period: 
Sat, 09/01/2007 to Fri, 08/31/2012
Project Evaluator: 
N/A
Full Description: 

The goal of this project is to investigate what teachers learn from an online professional development course, and whether teacher learning impacts student learning. High school biology teachers were randomly assigned to take an online course designed to enhance the teaching of genetics and evolution. in the course, participants explore the “big ideas” of the hard-to-teach topics of genetics and evolution through an exploration of online media resources and reflection on a range of teaching strategies. The course was created by WGBH Teachers’ Domain, an online library of free media resources from public television with funding from NSF and is administered by PBS TeacherLine.

The Coaching Cycle: An Interactive Online Course for Mathematics Coaches

The Coaching Cycle project is creating an online course for K–8 mathematics instructional coaches. The project targets coaches in rural areas and small schools who do not have access to regular district-wide professional development. It provides training in the skills needed for effective instructional coaching in mathematics by using artifacts collected by practicing coaches to engage course participants in the practice of coaching skills.

Award Number: 
0732495
Funding Period: 
Mon, 10/01/2007 to Fri, 09/30/2011
Project Evaluator: 
Eduation Alliance at Brown University

Fostering Mathematics Success in English Language Learners

This project is an efficacy study of the Fostering Geometrical Thinking Toolkit (FGTT) previously developed with NSF support. FGTT is a 40-hour professional development intervention focusing on properties of geometric figures, geometric transformations, and measurement of length, area, and volume. The study addresses four research questions, three examining participating teachers and one examining the impact of teachers' professional development on ELL students.

Award Number: 
0821950
Funding Period: 
Fri, 08/15/2008 to Sun, 07/31/2011
Full Description: 

Education Development Center, Inc. (EDC), and Horizon Research, Inc., are conducting the DR-K12 research project, Fostering Mathematics Success of English Language Learners (ELLs): An Efficacy Study of Teacher Professional Development (FMSELL), a study of the effects of the Fostering Geometric Thinking

Toolkit professional development materials (FGTT) for teachers of ELLs. It will address four research questions:

1.     Does participation in FGTT increase teachers’ geometric content knowledge?

2.     How does teachers’ participation affect attention to students’ thinking and mathematical communication?

3.     How does participation affect instructional practices?

4.     What impact on ELLs’ problem-solving strategies is evident when teachers participate in FGTT?

FGTT is a 40-hour professional development intervention focusing on properties of geometric figures, geometric transformations, and measurement of length, area, and volume. The project tests the hypothesis that geometric problem solving invites diagramming, drawing, use of colloquial language, and gesturing to complement mathematical communication and affords teachers opportunities to support ELL learning. The research design uses a randomized block design with 25 pairs of professional development facilitators matched according to their districts’ demographic information.

Investigating the Effect of Professional Development, Mathematical Knowledge for Teaching, and Instruction on Student Outcomes

To meet College and Career-Ready standards in mathematics, classroom instruction must change dramatically.  As in past reform efforts, many look to professional development as a major force to propel this transformation, yet not enough is known about mathematics professional development programs that operate at scale in the United States. In this project, we evaluated one such program.

Lead Organization(s): 
Award Number: 
0918383
Funding Period: 
Tue, 09/01/2009 to Fri, 08/31/2012
Full Description: 

To meet College and Career-Ready standards in mathematics, classroom instruction must change dramatically.  As in past reform efforts, many look to professional development as a major force to propel this transformation, yet not enough is known about mathematics professional development programs that operate at scale in the United States. In this project, we evaluated one such program by randomly assigning 105 teachers to either an “as is” control group or to receive professional development designed to a) improve mathematical knowledge for teaching and b) help teachers revise their instruction to be more cognitively demanding and student-centered. We found positive impacts on teachers’ mathematical knowledge for teaching, but no effects on teaching or student outcomes, suggesting that a modest increment in mathematical knowledge may not by itself be sufficient to improve instruction or student outcomes.

Learning to RECAST Students' Causal Assumptions in Science Through Interactive Multimedia Professional Development Tools

This project produced and is testing a website with tools to help teachers identify when students’ science learning may be limited by how they construe the underlying causal structure of the concepts. It demonstrates students’ difficulties and a pedagogical approach to help them recast their explanations to align them with the causal structure in the scientifically accepted explanations. The site focuses on middle school with in-depth examples in density and ecosystems.

Lead Organization(s): 
Award Number: 
0455664
Funding Period: 
Fri, 07/01/2005 to Sat, 04/30/2011
Project Evaluator: 
EDC
Full Description: 

Understanding the nature of causality is critical to learning a range of science concepts from “everyday science” to the science of complexity. The Understandings of Consequence (UC) Project, funded by NSF, established that students hold default assumptions about the nature of causality that hinder their science learning and that curriculum designed to restructure students’ causal assumptions while learning the science leads to deeper understanding. In this project, the UC team and the Science Media Group (SMG) of the Harvard-Smithsonian Center for Astrophysics collaborated in a five-year iterative design process to create interactive, multimedia professional development website. It has tools to guide middle school physics and biology teachers in assessing the structure of their students’ scientific explanations and in using existing curricula and developing their own curriculum to restructure or RECAST students’ understandings to fit with scientifically accepted explanations. It includes a range of formats including: documentary footage of real-life classrooms; interviews with teachers describing challenges and obstacles they faced introducing the curricula, how these were overcome, and, the benefits they obtained from using the materials; comments by students, which demonstrate the wide range of student prior thinking about specific causal forms as embedded in the science concepts; discussion questions, suggested hands-on activities, and short videotaped “content explorations,” examples of student written work and journals; design guides and questions to help teachers understand the features of and how to design RECAST activities, assessments, and assessment rubrics related to causal understanding in science. We are evaluating the site with 60 teachers and are iteratively improving it.

Creation and Dissemination of Upper-elementary Mathematics Assessment Modules

This project has constructed, pilot tested, validated, and is now disseminating assessments of student achievement for use in upper elementary grades.
Lead Organization(s): 
Award Number: 
0831450
Funding Period: 
Fri, 05/01/2009 to Mon, 04/30/2012
Full Description: 
This project has constructed, pilot tested, validated, and is now disseminating assessments of student achievement for use in upper elementary grades. There are four equivalent forms for each of the fourth and fifth grades, with each form covering (1) number and operations, (2) pre-algebra and algebra, and (3) geometry and measurement. Items are based in the literature on student's cognitive growth and are meant to:
  • Represent central ideas in the subject matter;
  • Focus on the meaning of facts and procedures; and
  • Require more complex responses than traditional multiple-choice problems. 
These forms and associated technical materials can be accessed at: http://cepr.harvard.edu/ncte-student-assessments

Pages

Subscribe to Teacher Content Knowledge