Curricula/Activities

Culturally Responsive Indigenous Science: Connecting Land, Language, and Culture

This Culturally Responsive Indigenous Science project seeks to advance this knowledge base through research and by catalyzing new approaches to Indigenous science, technology, engineering, and mathematics (ISTEM) learning. Using an ISTEM focused model, the project will develop, test, and implement a culturally responsive land-based curriculum that integrates Western science, multimodal technologies and digital tools, and Native American tribal knowledge, cultures and languages to investigate and address local environmental science and sustainability concerns.

Lead Organization(s): 
Award Number: 
1720931
Funding Period: 
Fri, 09/01/2017 to Tue, 08/31/2021
Full Description: 

The intersection between Indigenous and Western science continues to be of great importance to K-12 science education, particularly with regards to broadening participation in STEM. With over five hundred federally recognized Native American tribes in the United States, there is much to learn and understand. This Culturally Responsive Indigenous Science project seeks to advance this knowledge base through research and by catalyzing new approaches to Indigenous science, technology, engineering, and mathematics (ISTEM) learning. Using an ISTEM focused model, the project will develop, test, and implement a culturally responsive land-based curriculum that integrates Western science, multimodal technologies and digital tools, and Native American tribal knowledge, cultures and languages to investigate and address local environmental science and sustainability concerns. While Indigenous STEM teaching and learning as constructs have existed for many years, the rigorous research design and extensive integration of multimodal technologies as platforms for scientific inquiry, data management, knowledge dissemination and curation are innovative and timely. Few, if any, Design and Development projects in the current DRK-12 portfolio explore similar work. Therefore, the broader impacts of this project are poised to not only contribute to the DRK-12 portfolio but also advance knowledge in Indigenous STEM education and science education, more broadly.

Over a three year period, hundreds of Native American students (grades 4-9) in tribal schools located in Oregon, Washington, and Idaho will engage in the project. Each year, approximately 60-80 students (grades 7-9), with some returning students, will also participate in enrichment activities and in years 1-3, in the residential summer experience at Washington State University. A qualitative, quasi-experimental design-based study will be conducted to address three salient research questions: (a) What are the impacts of culturally responsive and land education-based ISTEM curriculum and technology on Native American student engagement, efficacy and achievement in school? (b) What types of professional development activities foster teacher efficacy and improve teacher learning and teaching of ISTEM in classrooms? and (c) How can ISTEM foster greater family and community engagement in schools and in Tribal Communities? Data will be collected through interviews, surveys, and or questionnaires from participating students, teachers, and Tribal members. Consistent with Indigenous methodologies, focus group interviews (talking circles) will also be facilitated after ISTEM community expositions and engagement activities to capture community impacts. Formative and summative evaluations will be conducted by the Learning and Performance Research Center (LPRC) at Washington State University, an independent entity of the University with extensive expertise in project evaluation. A broad range of dissemination activities will be employed to achieve maximum impacts, including the use of the Plateau People's Web Portal, a digital tool designed to help Native communities to manage, circulate, and curate their digital materials using their own cultural protocols, language and social systems. This regional collaboration includes partnerships with the Confederated Tribes of Warm Springs (Oregon), Confederated Tribes of the Colville Reservation (Washington), and the Coeur D'Alene Tribe (Idaho).

Mobilizing Teachers to Increase Capacity and Broaden Women's Participation in Physics (Collaborative Research: Hannum)

This project assesses the impact of scaling-up the teaching of physics and engineering to women students in grade levels 11 and 12, particularly in reference to retention. The aim is to mobilize high school physics teachers to "attract and recruit" female students into physics and engineering careers. The project will advance physics identity research by testing research-based approaches/interventions with larger groups of teachers and connecting research to practice in ways that are both widely deployable and practical for teachers to implement.

Award Number: 
1720869
Funding Period: 
Mon, 05/15/2017 to Fri, 04/30/2021
Full Description: 

This project assesses the impact of scaling-up the teaching of physics and engineering to women students in grade levels 11 and 12, particularly in reference to retention. The problem of low participation of women in physics and engineering has been a topic of concern for decades. The persistent underrepresentation of women in physics and engineering is not just an equity issue but also reflects an unrealized talent pool that can help respond to current and future challenges faced by society. The aim is to mobilize high school physics teachers to "attract and recruit" female students into science (physics) and engineering careers. The fundamental issues that the project seeks is to affect increases in the number of females in physics and engineering careers using research-informed and field-tested classroom practices that improve female students' physics identity. The project will advance science (physics) identity research by testing research-based approaches/interventions with larger groups of teachers and connecting research to practice in ways that are both widely deployable and practical for teachers to implement. The project will also affect female participation in engineering since developing a physics identity is strongly related to choosing engineering. The core area teachers will be trained in addressing student identity as a physicist or engineer.

In this project, two research universities (Florida International University, Texas A&M-Commerce) and the two largest national organizations in physics (American Physical Society and American Association of Physics Teachers) will work together using approaches/interventions drawn from prior research results that will be tested with teachers in three states (24 teachers, 8 in each state) using an experimental design with control and treatment groups. The project proposes three phases: 1. Refine already established interventions for improving female physics identity for use on a massive national level which will be assessed through previously validated and reliable surveys and sound research design; 2. Launch a massive national campaign involving workshops, training modules, and mass communication approaches to reach and attempt to mobilize 16,000 of the 27,000 physics teachers nationwide to attract and recruit at least one female student to physics using the intervention approaches refines in phase 1 and other classroom approaches shown to improve female physics identity; and 3. Evaluate of the success of the campaign through surveys of high school physics teachers (subjective data) and data from the Higher Education Research Institute to monitor female student increases in freshmen declaring a physics major during the years following the campaign (objective data). The interventions will focus on developing female students' physics identity, a construct which has been found to be strongly related to career choice and persistence in physics. The project has the potential to reduce or eliminate the gender gap in the field of physics. In addition, the increase in female physics identity is likely to also increase female representation in engineering majors. Therefore, the work will lay the groundwork for adapting similar methods for increasing under-representation of females in other disciplines. The societies involved (American Physical Society and American Association of Physics Teachers) are uniquely positioned within the discipline to ensure a successful campaign of information dissemination to physics teachers nationally and under-representation of females in other disciplines as well, engineering specifically.

Youth Participatory Science to Address Urban Heavy Metal Contamination

This project is focused on the work and learning of teachers as they engage youth from underrepresented groups in studying chemistry as a subject relevant to heavy metal contamination in their neighborhoods. The project will position Chicago teachers and students as Change Makers who are capable of addressing the crises of inequity in science education and environmental contamination that matter deeply to them, while simultaneously advancing their own understanding and expertise.

Award Number: 
1720856
Funding Period: 
Mon, 05/15/2017 to Thu, 04/30/2020
Full Description: 

This project is focused on the work and learning of teachers as they engage youth from underrepresented groups in studying chemistry as a subject relevant to heavy metal contamination in their neighborhoods. The project is a collaboration of teachers in the Chicago Public Schools, science educators, chemists, and environmental scientists from the University of Illinois at Chicago, Northwestern University, Loyola University, and members of the Chicago Environmental Justice Network. The project is significant because it leverages existing partnerships and builds on pilot projects which will be informed by a corresponding cycle of research on teachers' learning and practice. The project will position Chicago teachers and students as Change Makers who are capable of addressing the crises of inequity in science education and environmental contamination that matter deeply to them, while simultaneously advancing their own understanding and expertise. The project will examine the malleable factors affecting the ability of teachers to engage underrepresented students in innovative urban citizen science projects with a focus on the synergistic learning that occurs as teachers, students, scientists, and community members work together on addressing complex socio-scientific issues.

The goal is to provide a network of intellectual and analytical support to high school chemistry teachers engaged in customizing curricula in response to urban environmental concerns. The project will use an annual summer institute where collaborators will develop curriculum and procedures for collecting soil and water samples. In the project, the teachers and students will work with university scientists to analyze these samples for heavy metals, and students will share their results in community settings. The study design will be multiple case and be used to study the content knowledge learned and mobilized by participating teachers as they develop these authentic projects. The project includes explicit focus on the professional development of high school science teachers while it also aims to create rich learning opportunities for underrepresented high school students in STEM fields. The contextualized science concepts within students' everyday experiences or socio-scientific issues will likely have a positive impact on student motivation and learning outcomes, but the experiences of urban students are less likely to be reflected by the curriculum, and the practices of effective secondary science teachers in these contexts are under-examined.

The following article is in press and will be available soon:

Morales-Doyle, D., Childress-Price, T., & Chappell, M. (in press). Chemicals are contaminants too: Teaching appreciation and critique of science in the era of NGSS. Science Education. https://doi.org/10.1002/sce.21546

High School Students' Climate Literacy Through Epistemology of Scientific Modeling (Collaborative Research: Forbes)

This project will focus on learning about model based reasoning in science, and will develop, implement, study, and refine a 6-week climate science module for high school students. The module will feature use of a web-based climate modeling application, and the project team will collect and analyze evidence of model-based reasoning about climate phenomena among students.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1720838
Funding Period: 
Fri, 09/01/2017 to Fri, 12/31/2021
Full Description: 

This project will focus on learning about model based reasoning in science, and will develop, implement, study, and refine a 6-week climate science module for high school students. The module will feature use of a web-based climate modeling application, and the project team will collect and analyze evidence of model-based reasoning about climate phenomena among students. Scientists routinely use data-intensive, computer-based models to study complex natural phenomena, and modeling has become a core objective of current science curriculum standards. The project will provide new insights about student use of scientific models to understand natural phenomena, and advance knowledge about curriculum, instruction, and assessment practices that promote model-based reasoning among students.

This 4-year Design and Development project will examine use of a web-based climate modeling tool designed to provide non-scientists experiences with climate modeling in high school geoscience classrooms. A theoretically-grounded and empirically tested approach to design-based research, instructional design, and assessment development will be used in an iterative cycle of instructional innovation and education research to find answers to two research questions: 1) How do secondary students develop epistemic and conceptual knowledge about climate? And 2) How do secondary science teachers support student use of climate modeling application to develop epistemic and conceptual knowledge about climate? Data associated with conceptual and epistemic knowledge, curriculum-embedded modeling tasks, interviews, and videorecorded observations of instruction will be used to study impacts of the new curriculum module on 55 high school science teachers and 3,000 students. Project participants include students from low socioeconomic populations and other groups underrepresented in STEM fields. The curriculum will also serve as a resource for an existing, online professional development course at the American Museum of Natural History that engages teachers nationwide.

Learning in Places: Field Based Science in Early Childhood Education

This project aims to develop an innovative field-based science learning approach that will support the capacity of culturally diverse students in Grades K-3 to engage in complex ecological reasoning and related problem solving. To provide rich learning environments, outdoor learning gardens will be created in which students, teachers, garden educators, and families participate in activities that facilitate the investigation of tangible ecological challenges such as water capture and food security.

Lead Organization(s): 
Award Number: 
1720578
Funding Period: 
Sat, 07/01/2017 to Wed, 06/30/2021
Full Description: 

Recent evidence suggests that reasoning and making decisions about ecological systems is a cultural activity that impacts participation in the core scientific practices of observation, evidence use, and claims making. This project aims to develop an innovative field-based science learning approach that will support the capacity of culturally diverse students in Grades K-3 to engage in complex ecological reasoning and related problem solving. To provide rich learning environments, outdoor learning gardens will be created in which students, teachers, garden educators, and families participate in activities that facilitate the investigation of tangible ecological challenges such as water capture and food security.

Using design-based research, the project team will collaborate with teachers, parents of participating students, and community garden educators to collectively design and develop four key components: 1) field-based curricular units for K-3 classrooms; 2) a model of family and community engagement that strengthens cultural relevance and equity in field-based science learning; 3) a pilot program of teacher professional development that informs future scaling efforts; and 4) research that unpacks student learning and teacher instructional practices that support children?s complex ecological reasoning and the cultural contexts of such knowledge. Data sources will include video, interviews, surveys, and student-created artifacts. A mixed-methods approach will be used to produce research findings at multiple levels including: student learning about complex ecological phenomena and field-based practices; classroom-level learning and high-leverage teaching practices in model units at each grade level; impacts of co-design on professional learning and practice; and family and community organizations learning and engagement in field-based science education. The project will be carried out by a research-practice-community partnership in Seattle, Washington that includes learning scientists (University of Washington), K-3 teachers and school administrators (Seattle Public Schools), garden educators (Seattle Tilth), and parents of participating students. In total, eight schools, 32 teachers, 800 students, and 32 families are expected to participate.

High School Students' Climate Literacy Through Epistemology of Scientific Modeling (Collaborative Research: Chandler)

This project will focus on learning about model based reasoning in science, and will develop, implement, study, and refine a 6-week climate science module for high school students. The module will feature use of a web-based climate modeling application, and the project team will collect and analyze evidence of model-based reasoning about climate phenomena among students.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1719872
Funding Period: 
Fri, 09/01/2017 to Fri, 12/31/2021
Full Description: 

This project will focus on learning about model based reasoning in science, and will develop, implement, study, and refine a 6-week climate science module for high school students. The module will feature use of a web-based climate modeling application, and the project team will collect and analyze evidence of model-based reasoning about climate phenomena among students. Scientists routinely use data-intensive, computer-based models to study complex natural phenomena, and modeling has become a core objective of current science curriculum standards. The project will provide new insights about student use of scientific models to understand natural phenomena, and advance knowledge about curriculum, instruction, and assessment practices that promote model-based reasoning among students.

This 4-year Design and Development project will examine use of a web-based climate modeling tool designed to provide non-scientists experiences with climate modeling in high school geoscience classrooms. A theoretically-grounded and empirically tested approach to design-based research, instructional design, and assessment development will be used in an iterative cycle of instructional innovation and education research to find answers to two research questions: 1) How do secondary students develop epistemic and conceptual knowledge about climate? And 2) How do secondary science teachers support student use of climate modeling application to develop epistemic and conceptual knowledge about climate? Data associated with conceptual and epistemic knowledge, curriculum-embedded modeling tasks, interviews, and videorecorded observations of instruction will be used to study impacts of the new curriculum module on 55 high school science teachers and 3,000 students. Project participants include students from low socioeconomic populations and other groups underrepresented in STEM fields. The curriculum will also serve as a resource for an existing, online professional development course at the American Museum of Natural History that engages teachers nationwide.

CAREER: Designing and Enacting Mathematically Captivating Learning Experiences for High School Mathematics

This project explores how secondary mathematics teachers can plan and enact learning experiences that spur student curiosity, captivate students with complex mathematical content, and compel students to engage and persevere (referred to as "mathematically captivating learning experiences" or "MCLEs"). The study will examine how high school teachers can design lessons so that mathematical content itself is the source of student intrigue, pursuit, and passion.

Lead Organization(s): 
Award Number: 
1652513
Funding Period: 
Wed, 02/15/2017 to Mon, 01/31/2022
Full Description: 

This design and development project explores how secondary mathematics teachers can plan and enact learning experiences that spur student curiosity, captivate students with complex mathematical content, and compel students to engage and persevere (referred to as "mathematically captivating learning experiences" or "MCLEs"). This study is important because of persistent disinterest by secondary students in mathematics in the United States. This study will examine how high school teachers can design lessons so that mathematical content itself is the source of student intrigue, pursuit, and passion. To do this, the content within mathematical lessons (both planned and enacted) is framed as mathematical stories and the felt tension between how information is revealed and withheld from students as the mathematical story unfolds is framed as its mathematical plot. The Mathematical Story Framework (Dietiker, 2013, 2015) foregrounds both the coherence (does the story make sense?) and aesthetic (does it stimulate anticipation for what is to come, and if so, how?) dimensions of mathematics lessons. The project will generate principles for lesson design usable by teachers in other settings and exemplar lessons that can be shared.

Specifically, this project draws from prior curriculum research and design to (a) develop a theory of teacher MCLE design and enactment with the Mathematical Story Framework, (b) increase the understanding(s) of the aesthetic nature of mathematics curriculum by both researchers and teachers, and (c) generate detailed MCLE exemplars that demonstrate curricular coherence, cognitive demand, and aesthetic dimensions of mathematical lessons. The project is grounded in a design-based research framework for education research. A team of experienced high school teachers will design and test MCLEs (four per teacher) with researchers through three year-long cycles. Prior to the first cycle, data will be collected (interview, observations) to record initial teacher curricular strategies regarding student dispositions toward mathematics. Then, a professional development experience will introduce the Mathematical Story Framework, along with other curricular frameworks to support the planning and enacting of lessons (i.e., cognitive demand and coherence). During the design cycles, videotaped observations and student aesthetic measures (surveys and interviews) for both MCLEs and a non-MCLEs (randomly selected to be the lesson before or after the MCLE) will be collected to enable comparison. Also, student dispositional measures, collected at the beginning and end of each cycle, will be used to learn whether and how student attitudes in mathematics change over time. Of the MCLEs designed and tested, a sample will be selected (based on aesthetic and mathematical differences) and developed into models, complete with the rationale for and description of aesthetic dimensions.

CAREER: Investigating Changes in Students' Prior Mathematical Reasoning: An Exploration of Backward Transfer Effects in School Algebra

This project explores "backward transfer", or the ways in which new learning impacts previously-established ways of reasoning. The PI will observe and evaluate algebra I students as they learn quadratic functions and examine how different kinds of instruction about the new concept of quadratic functions helps or hinders students' prior mathematical knowledge of the previous concept of linear functions.

Lead Organization(s): 
Award Number: 
1651571
Funding Period: 
Sat, 07/01/2017 to Thu, 06/30/2022
Full Description: 

As students learn new mathematical concepts, teachers need to ensure that prior knowledge and prior ways understanding are not negatively affected. This award explores "backward transfer", or the ways in which new learning impacts previously-established ways of reasoning. The PI will observe and evaluate students in four Algebra I classrooms as they learn quadratic functions. The PI will examine how different kinds of instruction about the new concept of quadratic functions helps or hinders students' prior mathematical knowledge of the previous concept of linear functions. More generally, this award will contribute to the field of mathematics education by expanding the application of knowledge transfer, moving it from only a forward focused direction to include, also, a backward focused direction. An advisory board of scholars with expertise in mathematics education, assessment, social interactions, quantitative reasoning and measurement will support the project. The research will occur in diverse classrooms and result in presentations at the annual conferences of national organizations, peer-reviewed publications, as well as a website for teachers which will explain both the theoretical model and the findings from the project. An undergraduate university course and professional development workshops using video data from the project are also being developed for pre-service and in-service teachers. Ultimately, the research findings will generate new knowledge and offer guidance to elementary school teachers as they prepare their students for algebra.

The research involves three phases. The first phase includes observations and recordings of four Algebra I classrooms and will test students' understanding of linear functions before and after the lessons on quadratic functions. This phase will also include interviews with students to better understand their reasoning about linear function problems. The class sessions will be coded for the kind of reasoning that they promote. The second phase of the project will involve four cycles of design research to create quadratic and linear function activities that can be used as instructional interventions. In conjunction with this phase, pre-service teachers will observe teaching sessions through a course that will be offered concurrently with the design research. The final phase of the project will involve pilot-applied research which will test the effects of the instructional activities on students' linear function reasoning in classroom settings. This phase will include treatment and control groups and further test the hypotheses and instructional products developed in the first two phases.

Readiness through Integrative Science and Engineering: Refining and Testing a Co-constructed Curriculum Approach with Head Start Partners

Building upon prior research on Head Start curriculum, this phase of Readiness through Integrative Science and Engineering (RISE) will be expanded to include classroom coaches and community experts to enable implementation and assessment of RISE in a larger sample of classrooms. The goal is to improve school readiness for culturally and linguistically diverse, urban-residing children from low-income families, and the focus on science, technology, and engineering will address a gap in early STEM education.

Lead Organization(s): 
Award Number: 
1621161
Funding Period: 
Sat, 10/01/2016 to Wed, 09/30/2020
Full Description: 

Readiness through Integrative Science and Engineering (RISE) is a late stage design and development project that will build upon the results of an earlier NSF-funded design and development study in which a co-construction process for curriculum development was designed by a team of education researchers with a small group of Head Start educators and parent leaders. In this phase, the design team will be expanded to include Classroom Coaches and Community Experts to enable implementation and assessment of the RISE model in a larger sample of Head Start classrooms. In this current phase, an iterative design process will further develop the science, technology, and engineering curricular materials as well continue to refine supports for teachers to access families' funds of knowledge related to science, technology, and engineering in order to build on children's prior knowledge as home-school connections. The ultimate goal of the project is to improve school readiness for culturally and linguistically diverse, urban-residing children from low-income families who tend to be underrepresented in curriculum development studies even though they are most at-risk for later school adjustment difficulties. The focus on science, technology, and engineering will address a gap in early STEM education.

The proposed group-randomized design, consisting of 90 teachers/classrooms (45 RISE/45 Control), will allow for assessment of the impact of a 2-year RISE intervention compared with a no-intervention control group. Year 1 will consist of recruitment, induction, and training of Classroom Coaches and Community Experts in the full RISE model, as well as preparation of integrative curricular materials and resources. In Year 2, participating teachers will implement the RISE curriculum approach supported by Classroom Coaches and Community Experts; data on teacher practice, classroom quality, and implementation fidelity will be collected, and these formative assessments will inform redesign and any refinements for Year 3. During Year 2, project-specific measures of learning for science, technology, and engineering concepts and skills will also be tested and refined. In Year 3, pre-post data on teachers (as in Year 2) as well as on 10 randomly selected children in each classroom (N = 900) will be collected. When child outcomes are assessed, multilevel modeling will be used to account for nesting of children in classrooms. In addition, several moderators will be examined in final summative analyses (e.g., teacher education, part or full-day classroom, parent demographics, implementation fidelity). At the end of this project, all materials will be finalized and the RISE co-construction approach will be ready for scale-up and replication studies in other communities.

INFEWS/T4: The INFEWS-ER: a Virtual Resource Center Enabling Graduate Innovations at the Nexus of Food, Energy, and Water Systems

This project will provide a virtual environment for completing the Food, Energy, and Water (FEW) graduate student experience. The proposed work facilitates a transition from interdisciplinary to transdisciplinary training of existing faculty and current graduate students through a virtual resource center to help develop systematic processes for interdisciplinary thinking about large societal problems, especially those at the nexus of food, energy, and water.

Award Number: 
1639340
Funding Period: 
Thu, 09/01/2016 to Mon, 08/31/2020
Full Description: 

This project will provide a virtual environment for completing the Food, Energy, and Water (FEW) graduate student experience, thereby facilitating the generation of human capital who can address grand challenges at the nexus of food, energy, and water. The INFEWS-ER will provide educational resources (ER) targeting innovations at the nexus of FEW by combining the fundamental sciences of food, energy, and water with the skills and knowledge of interdisciplinary problem solving and the latest computational modeling and analysis tools and data. These individuals will be capable of analyzing scenarios at the scale of nations, continents, and the globe. The INFEWS-ER will offer certificate programs where FEW Graduate Scholars can demonstrate their capabilities in interdisciplinary thinking, Big Data, and computational modeling and analysis, thereby receiving a credential demonstrating their level of achievement. Further, The INFEWS-ER will offer a faculty fellowship program to incentivize a network of academics that will provide a scaffolded learning environment for graduates, effectively creating a hub for INFEWS research, education, and training.

The proposed work facilitates a transition from interdisciplinary to transdisciplinary training of existing faculty and current graduate students (who will become future faculty, practitioners, and policy makers) through a virtual resource center that will be accessible beyond the project team and project timeframe. Students will develop systematic processes for interdisciplinary thinking. They will be in the best possible position to target large societal problems, especially those at the nexus of food, energy, and water. New, interdisciplinary solutions will emerge, solutions that are sensitive to a wider array of constraints and ideals. Those solutions will reflect the best possible integration of technological, socio-economic, and socio-political constructs. Project impacts include educational and workforce development of the next generation of academics, multi-institution collaboration, and enhanced infrastructure for transdisciplinary research and education. The INFEWS-ER also has the potential to influence the way interdisciplinary research and education is implemented in the future through the archival dissemination of not only learning modules, but also the evaluations and lessons learned from the implementation of the center.

Pages

Subscribe to Curricula/Activities