Curricula/Activities

Co-developing a Curriculum Coherence Toolkit with Teachers (Collaborative Research: Newton)

This project will investigate the factors that influence curriculum coherence and how teachers in Grades 3-5 respond to these factors as they make decisions about their mathematics curriculum.

Project Email: 
Lead Organization(s): 
Award Number: 
1907808
Funding Period: 
Mon, 07/01/2019 to Wed, 06/30/2021
Project Evaluator: 
Full Description: 

One important aspect of any mathematics curriculum is its coherence, or the mathematical connections across lessons. This coherence links lessons and activities so that mathematical ideas, representations, practices, skills, and ways of thinking build upon each other to help students construct mathematical meaning and enhance their learning. When teachers relied predominantly on published curriculum materials, curricular coherence was largely provided by the curriculum authors. However, many of today's teachers are no longer given a foundational textbook or single set of resources. Further, teachers have unprecedented access via the internet and social media to lessons and activities produced by many different curriculum developers (including other teachers). As a result, the important task of building curricular coherence becomes the responsibility of the classroom teacher. And yet, very little is known about how teachers think about curricular coherence or how their decisions about lessons and activities reflect the coherent mathematical story they hope to students will learn in their classrooms. This project will investigate the factors that influence curriculum coherence and how teachers in Grades 3-5 respond to these factors as they make decisions about their mathematics curriculum. A national survey of 300 Grades 3-5 teachers will be conducted in in the first phase of the project and the work will continue with small groups of four case study teachers in each of four different districts across four states. Case study participants will work with project researchers to co-develop a set of tools for supporting curriculum coherence. The structure of the project and the selection of case study participants will facilitate the collaborative co-development of tools across institutions and across geographic and curricular contexts, supporting the use of the tools across a wide range of contexts. The outcomes of this study will contribute to broader impacts by developing understandings of curriculum coherence that are robust across a range of curricular, policy, and district/school contexts, with implications that support the participation of students in diverse mathematics classrooms. The survey findings and the coherence toolkit co-developed with teachers will be disseminated widely through conference presentations, including teacher-oriented conferences, through journal publications, and through making survey data available to other researchers.

The research objectives of this study are to explore 1) patterns of Grade 3-5 teacher curricular resource use across a range of curriculum contexts, 2) teacher decisions about curriculum coherence, and 3) how curriculum toolkits co-developed with teachers might support teachers in making decisions related to curriculum coherence. Given the potential variation among and within states and districts in terms of contextual factors impacting curriculum use, teachers will be surveyed about their contexts, available resources, and curricular decision-making. Survey data will be analyzed using primarily descriptive analyses. Following the survey, in-depth case studies of teacher curricular resource use in contexts that vary along two dimensions (autonomy to select curricular resources and the complexity of curricular influences, including the number of resources available) will be developed. Case study data, including interviews, video-recorded co-design groups, and curriculum use artifacts, will be analyzed using methods of discourse analysis, thematic analysis, and document analysis and synthesized within and across cases. By selecting cases along these dimensions, a set of tools will be co-developed to support teachers as they navigate diverse curricular contexts to enact a coherent curriculum for students.

Alternative video text
Alternative video text: 

Using Animated Contrasting Cases to Improve Procedural and Conceptual Knowledge in Geometry

This project aims to support stronger student outcomes in the teaching and learning of geometry in the middle grades through engaging students in animated contrasting cases of worked examples. The project will design a series of animated geometry curricular materials on a digital platform that ask students to compare different approaches to solving the same geometry problem. The study will measure changes in students' procedural and conceptual knowledge of geometry after engaging with the materials and will explore the ways in which teachers implement the materials in their classrooms.

Award Number: 
1907745
Funding Period: 
Thu, 08/01/2019 to Sun, 07/31/2022
Full Description: 

This project aims to support stronger student outcomes in the teaching and learning of geometry in the middle grades through engaging students in animated contrasting cases of worked examples. Animated contrasting cases are a set of two worked examples for the same geometry problem, approached in different ways. The animations show the visual moves and annotations students would make in solving the problems. Students are asked to compare and discuss the approaches. This theoretically-grounded approach extends the work of cognitive scientists and mathematics educators who have shown this approach supports strong student learning in algebra. The project will design a series of animated geometry curricular materials on a digital platform that ask students to compare different approaches to solving the same geometry problem. The study will measure changes in students' procedural and conceptual knowledge of geometry after engaging with the materials and will explore the ways in which teachers implement the materials in their classrooms. This work is particularly important as geometry is an understudied area in mathematics education, and national and international assessments at the middle school level consistently identify geometry as a mathematics content area in which students score the lowest.

This project draws on prior work that documents the impact of comparison on students' learning in algebra. Providing students with opportunities to compare multiple strategies is recommended by a range of mathematics policy documents, as research has shown this approach promotes flexibility and enhances conceptual knowledge and procedural fluency. More specifically, the approach allows students to compare the effectiveness and efficiency of mathematical arguments in the context of problem solving. An initial pilot study on non-animated contrasting cases in geometry shows promise for the general approach and suggests that animating the cases has the potential for stronger student learning gains. This study will examine the extent to which the animated cases improve students' conceptual and procedural knowledge of geometry and identify factors that relate to changes in knowledge. The project team will develop 24 worked example contrasting cases based on design principles from the prior work in algebra. The materials will be implemented in four treatment classrooms in the first cycle, revised, and then implemented in eight treatment classrooms. Students' written work will be collected along with data on the nature of the classroom discussions and small-group interviews with students. Teachers' perspectives on lessons will also be collected to support revision and strengthening of the materials. Assessments of students' geometry knowledge will be developed using measures with demonstrated validity and reliability to measure changes in student learning.

Co-developing a Curriculum Coherence Toolkit with Teachers (Collaborative Research: Olson)

This project will investigate the factors that influence curriculum coherence and how teachers in Grades 3-5 respond to these factors as they make decisions about their mathematics curriculum.

Lead Organization(s): 
Award Number: 
1907650
Funding Period: 
Mon, 07/01/2019 to Wed, 06/30/2021
Full Description: 

One important aspect of any mathematics curriculum is its coherence, or the mathematical connections across lessons. This coherence links lessons and activities so that mathematical ideas, representations, practices, skills, and ways of thinking build upon each other to help students construct mathematical meaning and enhance their learning. When teachers relied predominantly on published curriculum materials, curricular coherence was largely provided by the curriculum authors. However, many of today's teachers are no longer given a foundational textbook or single set of resources. Further, teachers have unprecedented access via the internet and social media to lessons and activities produced by many different curriculum developers (including other teachers). As a result, the important task of building curricular coherence becomes the responsibility of the classroom teacher. And yet, very little is known about how teachers think about curricular coherence or how their decisions about lessons and activities reflect the coherent mathematical story they hope to students will learn in their classrooms. This project will investigate the factors that influence curriculum coherence and how teachers in Grades 3-5 respond to these factors as they make decisions about their mathematics curriculum. A national survey of 300 Grades 3-5 teachers will be conducted in in the first phase of the project and the work will continue with small groups of four case study teachers in each of four different districts across four states. Case study participants will work with project researchers to co-develop a set of tools for supporting curriculum coherence. The structure of the project and the selection of case study participants will facilitate the collaborative co-development of tools across institutions and across geographic and curricular contexts, supporting the use of the tools across a wide range of contexts. The outcomes of this study will contribute to broader impacts by developing understandings of curriculum coherence that are robust across a range of curricular, policy, and district/school contexts, with implications that support the participation of students in diverse mathematics classrooms. The survey findings and the coherence toolkit co-developed with teachers will be disseminated widely through conference presentations, including teacher-oriented conferences, through journal publications, and through making survey data available to other researchers.

The research objectives of this study are to explore 1) patterns of Grade 3-5 teacher curricular resource use across a range of curriculum contexts, 2) teacher decisions about curriculum coherence, and 3) how curriculum toolkits co-developed with teachers might support teachers in making decisions related to curriculum coherence. Given the potential variation among and within states and districts in terms of contextual factors impacting curriculum use, teachers will be surveyed about their contexts, available resources, and curricular decision-making. Survey data will be analyzed using primarily descriptive analyses. Following the survey, in-depth case studies of teacher curricular resource use in contexts that vary along two dimensions (autonomy to select curricular resources and the complexity of curricular influences, including the number of resources available) will be developed. Case study data, including interviews, video-recorded co-design groups, and curriculum use artifacts, will be analyzed using methods of discourse analysis, thematic analysis, and document analysis and synthesized within and across cases. By selecting cases along these dimensions, a set of tools will be co-developed to support teachers as they navigate diverse curricular contexts to enact a coherent curriculum for students.

Developing Learning Environments that Support Molecular-Level Sensemaking

This project will investigate how high school students can be supported in developing, organizing and using knowledge of atomic/molecular behavior to make sense of phenomena such as phase changes, atomic emmision spectra and dissolution. The project will study whether an innovative college level curriculum, "Chemistry, Life, the Universe and Everything" (CLUE) can be co-modified by teachers, chemists, and researchers to help students master these difficult concepts and connections.

Partner Organization(s): 
Award Number: 
2003680
Funding Period: 
Sat, 06/15/2019 to Wed, 05/31/2023
Full Description: 

This Early Stage Design and Development (Level II) project is aimed at understanding how learning environments should be designed to support high school students enrolled in an introductory chemistry course in making sense of phenomena in terms of atomic/molecular behavior. As students do not derive many intellectual resources useful for reasoning about the particulate-level from experience, sensemaking in chemistry relies heavily on knowledge cultivated in formal instructional settings. A significant body of research on college-level learning environments indicates that centering instruction around scaffolded progressions of core ideas help students develop, organize, and use their knowledge to explain and model phenomena. Preliminary results from a study conducted by the PI and co-PI show that adapting college-level, evidence-based conceptual progressions for use in high school has the potential to aid students in connecting molecular-level structure to measurable properties. 

This research program focuses on leveraging the practical knowledge of teacher co-developers who participated in preliminary studies to realize a Next-Generation Science Standards-aligned curricular framework supportive of 3-dimensional learning in chemistry. In designing learning environments supportive of molecular-level sensemaking, the research team will consider 1) when students are prepared to grapple with the inferences required to figure out causes for observable occurrences, and 2) how sensemaking opportunities should be structured to engage students in collaborative construction and critique of explanations and models of phenomena. Student ability to engage in sensemaking will be assessed via analysis of responses to carefully designed and validated three-dimensional assessments, and analysis of the discourse practices of student groups as they engage in construction and refinement of models and explanations. This program of research will also place substantial focus on characterizing how and why teacher co-developers modify curricular materials in order that supports for productive modifications might be embedded throughout teacher-facing resources. This project will provide evidence about how students should be supported in developing, organizing, and using knowledge of atomic/molecular behavior to make sense of phenomena. Concomitant focus on the design and analysis of learning environments for high school chemistry will enable data-driven refinement of materials, and support elucidation of generalizable design principles. The aim of this research is to develop and make available materials that constitute "tool kits" for a curricular activity system (including text, teacher guides, student guides, and formative and summative assessments). Three-dimensional assessment items designed and validated in the research will be made broadly available and could serve as benchmarks for the efficacy of high school chemistry curricula nationwide.

This project was previously funded under award #1906293.

Professional Development for Teaching and Learning about Energy and Equity in High School Physics (Collaborative Research: Scherr)

This project will research and develop instructional materials and conduct professional development for teachers to help students understand energy flow. The project will create a model for secondary science teacher professional development that integrates science concepts with equity education.

Lead Organization(s): 
Award Number: 
1907815
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Full Description: 

This project will research and develop instructional materials and conduct professional development for teachers to help students understand energy flow, an important scientific concept with economic and social implications. This energy learning is the foundation for informed decision-making about sustainable and just use of energy resources. Energy issues are not only issues of science and technology, but must be integrated with civics, history, economics, sociology, psychology, and politics to understand and solve modern energy problems. Placing the scientific concept of energy in this social context presents an opportunity to advance science education as equitable and culturally responsive.

This project will create a model for secondary science teacher professional development that integrates science concepts with equity education. This model promotes a key epistemological issue: that science concepts are not culture-free or socially neutral ideas, but rather are concepts created and sustained by people in specific times and places for the purposes of (1) addressing specific social needs and (2) empowering people or groups of people. The two major components of the project are (1) the professional development experience, including both an intensive in-person summer workshop and an online professional learning community, and (2)an energy and equity portal, including an instructional materials library, an action research exchange, and a community forum for teacher discussions. The portal will provide technical resources to support the PLC, including support for sharing instructional materials and reporting on action research. The research plan includes exploratory, development and application phases. The researchers will identify teacher learning in the first iteration of PD, collect and analyze the instructional artifacts to inform how teacher engage with, participate in, and build an understanding energy as a historically and politically situated science concept. A team of scholar-videographers will observe, taking real-time field notes and making daily memos. The research team will use the instructional artifacts, video recordings, field notes, and memos as a basis for analysis through the next academic year. The result will be a nationally significant community of teacher-leaders and library of research-tested instructional materials that are responsive to students' scientific ideas, relevant to socio-political concerns about energy sustainability, respectful of students' cultures, and open to all students no matter their cultural background. Teachers participating in the project will learn to explain how scientific concepts of energy reflect culturally specific values, analyze socio-politically relevant energy scenarios, learn the historic and present-day inequities in the energy industry and in science participation, and be supported in preparing instruction for secondary students that is culturally responsive and relevant to their students' communities.

Professional Development for Teaching and Learning about Energy and Equity in High School Physics (Collaborative Research: Mason)

This project will research and develop instructional materials and conduct professional development for teachers to help students understand energy flow. The project will create a model for secondary science teacher professional development that integrates science concepts with equity education.

Partner Organization(s): 
Award Number: 
1907950
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Full Description: 

This project will research and develop instructional materials and conduct professional development for teachers to help students understand energy flow, an important scientific concept with economic and social implications. This energy learning is the foundation for informed decision-making about sustainable and just use of energy resources. Energy issues are not only issues of science and technology, but must be integrated with civics, history, economics, sociology, psychology, and politics to understand and solve modern energy problems. Placing the scientific concept of energy in this social context presents an opportunity to advance science education as equitable and culturally responsive.

This project will create a model for secondary science teacher professional development that integrates science concepts with equity education. This model promotes a key epistemological issue: that science concepts are not culture-free or socially neutral ideas, but rather are concepts created and sustained by people in specific times and places for the purposes of (1) addressing specific social needs and (2) empowering people or groups of people. The two major components of the project are (1) the professional development experience, including both an intensive in-person summer workshop and an online professional learning community, and (2)an energy and equity portal, including an instructional materials library, an action research exchange, and a community forum for teacher discussions. The portal will provide technical resources to support the PLC, including support for sharing instructional materials and reporting on action research. The research plan includes exploratory, development and application phases. The researchers will identify teacher learning in the first iteration of PD, collect and analyze the instructional artifacts to inform how teacher engage with, participate in, and build an understanding energy as a historically and politically situated science concept. A team of scholar-videographers will observe, taking real-time field notes and making daily memos. The research team will use the instructional artifacts, video recordings, field notes, and memos as a basis for analysis through the next academic year. The result will be a nationally significant community of teacher-leaders and library of research-tested instructional materials that are responsive to students' scientific ideas, relevant to socio-political concerns about energy sustainability, respectful of students' cultures, and open to all students no matter their cultural background. Teachers participating in the project will learn to explain how scientific concepts of energy reflect culturally specific values, analyze socio-politically relevant energy scenarios, learn the historic and present-day inequities in the energy industry and in science participation, and be supported in preparing instruction for secondary students that is culturally responsive and relevant to their students' communities.

STEM Sea, Air, and Land Remotely Operated Vehicle Design Challenges for Rural, Middle School Youth

This project provides middle school students in a high poverty rural area in Northern Florida an opportunity to pursue post-secondary study in STEM by providing quality and relevant STEM design. The project will integrate engineering design, technology and society, electrical knowledge, and computer science to improve middle school students' spatial reasoning through experiences embedded within engineering design challenges.

Award Number: 
1812913
Funding Period: 
Mon, 04/01/2019 to Thu, 03/31/2022
Full Description: 

This project provides middle school students in a high poverty rural area in Northern Florida an opportunity to pursue post-secondary study in STEM by providing quality and relevant STEM design. The design challenges will be contextualized within a rural region (i.e., GIS mapping and drones used for surveying large ranches, farms, and forests), producing a series of six design challenge modules and two competition design challenges with accompanying teacher guides for preparing relevant STEM modules for 90 middle school aged students. The project will integrate 4 components: (a) engineering design, (b) technology and society, (c) electrical knowledge, and (d) computer science. The project aims to improve middle school students' spatial reasoning through experiences embedded within engineering design challenges.

Collaborative partners consisting of school level, college level, and STEM professionals will develop the design challenges, using best practices from STEM learning research, with the intent of advancing STEM pathway awareness and participation among historically underserved students in the rural, high-poverty region served by North Florida Community College. Data regarding student outcomes will be collected before and after implementation, including measures of content mastery, spatial reasoning skills, self-efficacy, attitudes and interests in STEM, and academic achievement in science courses. Assessment of the data will involve the research and development phases of six curriculum modules and (2) an intervention study following a delayed-treatment design model.

There is a growing need for the increased broadening of STEM by underserved groups. By increasing the number of rural students who participate in STEM hands on, interdisciplinary experiences, the project has the potential to expand interest and competency in mathematics and science and expand the number of students who are aware of STEM career pathways.

Professional Development Supports for Teaching Bioinformatics through Mobile Learning

This project will investigate the professional development supports needed for teaching bioinformatics at the high school level. The project team will work with biology and mathematics teachers to co-design instructional modules to engage students with core bioinformatics concepts and computational literacies, by focusing on local community health issues supported through mobile learning activities.

Lead Organization(s): 
Award Number: 
1812738
Funding Period: 
Sat, 09/01/2018 to Mon, 02/28/2022
Full Description: 

Bioinformatics is an emerging area of research that develops new knowledge through computational analysis of vast biological and biomedical data. This project will investigate the professional development supports needed for teaching bioinformatics at the high school level. Building from a robust literature in professional development design research, project team will work with biology and mathematics teachers to co-design instructional modules to engage students with core bioinformatics concepts and computational literacies, by focusing on local community health issues supported through mobile learning activities. The overarching goal of the project is to help create an engage population of informatics-informed students who are capable of critically analyzing information and able to solve local problems related to their health and well-being.

The project team will use a design-based implementation research approach to identify the curricular and instructional supports needed to achieve the teaching and learning goals through iterative project revisions, employing mixed methods to evaluate teacher and student learning processes and outcomes. Teachers from local high needs schools will participate in a three-week summer workshop, where they will learn about state-of-the-art bioinformatics content, project-based pedagogies that promote computational literacy, and strategies integrate mobile technologies into instruction.  They will implement the instructional units during the year, and the summer workshop will be revised and delivered to an expanded cohort of teachers the following summer. The data collection and analysis conducted on teachers' enactment of these modules will reveal the professional development and implementation areas needed to support particular populations, specifically underrepresented groups in STEM, to engage with bioinformatics learning and take authentic action on local community issues.

Supporting Teachers in Responsive Instruction for Developing Expertise in Science (Collaborative Research: Linn)

This project takes advantage of advanced technologies to support science teachers to rapidly respond to diverse student ideas in their classrooms. Students will use web-based curriculum units to engage with models, simulations, and virtual experiments to write multiple explanations for standards-based science topics. The project will also design planning tools for teachers that will make suggestions relevant research-proven instructional strategies based on the real-time analysis of student responses.

Partner Organization(s): 
Award Number: 
1813713
Funding Period: 
Sat, 09/01/2018 to Wed, 08/31/2022
Full Description: 

Many teachers want to adapt their instruction to meet student learning needs, yet lack the time to regularly assess and analyze students' developing understandings. The Supporting Teachers in Responsive Instruction for Developing Expertise in Science (STRIDES) project takes advantage of advanced technologies to support science teachers to rapidly respond to diverse student ideas in their classrooms. In this project students will use web-based curriculum units to engage with models, simulations, and virtual experiments to write multiple explanations for standards-based science topics. Advanced technologies (including natural language processing) will be used to assess students' written responses and summaries their science understanding in real-time. The project will also design planning tools for teachers that will make suggestions relevant research-proven instructional strategies based on the real-time analysis of student responses. Research will examine how teachers make use of the feedback and suggestions to customize their instruction. Further we will study how these instructional changes help students develop coherent understanding of complex science topics and ability to make sense of models and graphs. The findings will be used to refine the tools that analyze the student essays and generate the summaries; improve the research-based instructional suggestions in the planning tool; and strengthen the online interface for teachers. The tools will be incorporated into open-source, freely available online curriculum units. STRIDES will directly benefit up to 30 teachers and 24,000 students from diverse school settings over four years.

Leveraging advances in natural language processing methods, the project will analyze student written explanations to provide fine-grained summaries to teachers about strengths and weaknesses in student work. Based on the linguistic analysis and logs of student navigation, the project will then provide instructional customizations based on learning science research, and study how teachers use them to improve student progress. Researchers will annually conduct at least 10 design or comparison studies, each involving up to 6 teachers and 300-600 students per year. Insights from this research will be captured in automated scoring algorithms, empirically tested and refined customization activities, and data logging techniques that can be used by other research and curriculum design programs to enable teacher customization.

Building Middle School Students' Understanding of Heredity and Evolution

This project will develop and test the impact of heredity and evolution curriculum units for middle school grades that are aligned with the Next Generation Science Standards (NGSS). The project will advance science teaching by investigating the ways in which two curriculum units can be designed to incorporate science and engineering practices, cross-cutting concepts, and disciplinary core ideas, the three dimensions of science learning described by the NGSS. The project will also develop resources to support teachers in implementation of the new modules.

Lead Organization(s): 
Award Number: 
1814194
Funding Period: 
Sat, 09/01/2018 to Wed, 08/31/2022
Full Description: 

This project will develop and test the impact of heredity and evolution curriculum units for middle school grades that are aligned with the Next Generation Science Standards (NGSS). The project will advance science teaching by investigating the ways in which two curriculum units can be designed to incorporate science and engineering practices, cross-cutting concepts, and disciplinary core ideas, the three dimensions of science learning described by the NGSS. The project will also develop resources to support teachers in implementation of the new modules. The planned research will also examine whether student understanding of evolution depends on the length and time of exposure to learning about heredity prior to learning about evolution.

This Early Stage Design and Development project will develop two new 3-week middle school curriculum units, with one focusing on heredity and the other focusing on evolution. The units will include embedded formative and summative assessment measures and online teacher support materials. These units will be developed as part of a curriculum learning progression that will eventually span the elementary grades through high school. This curriculum learning progression will integrate heredity, evolution, data analysis, construction of scientific explanations, evidence-based argumentation, pattern recognition, and inferring cause and effect relationships. To inform development and iterative revisions of the units, the project will conduct nation-wide beta and pilot tests, selecting schools with broad ranges of student demographics and geographical locations. The project will include three rounds of testing and revision of both the student curriculum and teacher materials. The project will also investigate student understanding of evolution in terms of how their understanding is impacted by conceptual understanding of heredity. The research to be conducted by this project is organized around three broad research questions: (a) In what ways can two curriculum units be designed to incorporate the three dimensions of science learning and educative teacher supports to guide students' conceptual understanding of heredity and evolution? (b) To what extent does student understanding of evolution depend on the length and timing of heredity lessons that preceded an evolution unit? And (c) In what ways do students learn heredity and evolution?

Pages

Subscribe to Curricula/Activities