Curricula/Activities

Pandemic Learning Loss in U.S. High Schools: A National Examination of Student Experiences

As a result of the COVID-19 pandemic, schools across much of the U.S. have been closed since mid-March of 2020 and many students have been attempting to continue their education away from schools. Student experiences across the country are likely to be highly variable depending on a variety of factors at the individual, home, school, district, and state levels. This project will use two, nationally representative, existing databases of high school students to study their experiences in STEM education during the COVID-19 pandemic.

Lead Organization(s): 
Award Number: 
2030436
Funding Period: 
Fri, 05/15/2020 to Fri, 04/30/2021
Full Description: 

As a result of the COVID-19 pandemic, schools across much of the U.S. have been closed since mid-March of 2020 and many students have been attempting to continue their education away from schools. Student experiences across the country are likely to be highly variable depending on a variety of factors at the individual, home, school, district, and state levels. This project will use two, nationally representative, existing databases of high school students to study their experiences in STEM education during the COVID-19 pandemic. The study intends to ascertain whether students are taking STEM courses in high school, the nature of the changes made to the courses, and their plans for the fall. The researchers will identify the electronic learning platforms in use, and other modifications made to STEM experiences in formal and informal settings. The study is particularly interested in finding patterns of inequities for students in various demographic groups underserved in STEM and who may be most likely to be affected by a hiatus in formal education.

This study will collect data using the AmeriSpeak Teen Panel of approximately 2,000 students aged 13 to 17 and the Infinite Campus Student Information System with a sample of approximately 2.5 million high school students. The data sets allow for relevant comparisons of student experiences prior to and during the COVID-19 pandemic and offer unique perspectives with nationally representative samples of U.S. high school students. New data collection will focus on formal and informal STEM learning opportunities, engagement, STEM course taking, the nature and frequency of instruction, interactions with teachers, interest in STEM, and career aspirations. Weighted data will be analyzed using descriptive statistics and within and between district analysis will be conducted to assess group differences. Estimates of between group pandemic learning loss will be provided with attention to demographic factors.

This RAPID award is made by the DRK-12 program in the Division of Research on Learning. The Discovery Research PreK-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics by preK-12 students and teachers, through the research and development of new innovations and approaches. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for the projects.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

 

 

 

 

Place-Based Learning for Elementary Science at Scale (PeBLES2)

To support equitable access to place-based science learning opportunities, Maine Mathematics and Science Alliance in collaboration with BSCS Science Learning, will develop and test a model to support 3rd-5th grade teachers in incorporating locally or culturally relevant place-based phenomena into rigorously tested curricular units that meet the expectations of the NGSS. The project team will develop two units that could be used in any region across the country with built-in opportunities and embedded supports for teachers to purposefully adapt curriculum to include local phenomena.

Award Number: 
2009613
Funding Period: 
Fri, 05/15/2020 to Tue, 04/30/2024
Full Description: 

This project investigates how to design instructional resources and supporting professional learning that value rigor and standardization while at the same time creating experiences that help students understand their worlds by connecting to local phenomena, communities, and cultures. Currently, many instructional materials designed for widespread use do not connect to local phenomena, while units that do incorporate local phenomena are often developed from the ground up by community members, requiring extensive time and resources.  To support equitable access to place-based science learning opportunities, the Maine Mathematics and Science Alliance in collaboration with BSCS Science Learning, will develop and test a model to support 3rd-5th grade teachers in incorporating locally or culturally relevant place-based phenomena into rigorously tested units that meet the expectations of the Next Generation Science Standards (NGSS). The project team will develop two units and associated professional learning that could be used in any region across the country with built-in opportunities for teachers to purposefully adapt curriculum to include local phenomena.

A design based research approach will be used to: 1) iteratively design, test, and revise, two locally adaptable instructional resource packages for Grades 3-5 science; 2) examine how teachers apply unit resources and professional learning experiences to incorporate local phenomena into the curriculum and their teaching; and 3) examine how the process of curriculum adaptation can support teacher understanding of the science ideas and phenomena within the units, teacher agency and self-efficacy beliefs in science teaching, and student perceptions of relevance and interest in science learning. Participating teachers will range from rural and urban settings in California, Colorado, and Maine. Data sources will include instructional logs, teacher surveys, and student electronic exit tickets from 50 classrooms per unit as well as teacher interviews, classroom observations, and student focus groups from six exemplar case study teachers per unit. Evaluation of the project will focus on monitoring the (1) quality of the research and development components, (2) quality of program implementation to inform program improvement and future implementation, and (3) potential of scaling up the program to other sites and organizations. The design and research from this project will advance the field’s knowledge about how to design instructional materials and professional learning experiences that meet the expectations of the NGSS while also empowering teachers to adapt materials in productive ways, drawing on locally or culturally relevant phenomena.

Responding to a Global Pandemic: The Role of K-12 Science Teachers

This project will support a national research study on how teachers are helping students respond to COVID-19. The findings will inform the development of curriculum materials for teaching about COVID-19 and help science teachers to adapt their instruction as they help to fulfill a critical public health function. This study will enable a better understanding of the role that science teachers can play in a national response, both now and in future crises.

Lead Organization(s): 
Award Number: 
2027397
Funding Period: 
Fri, 05/01/2020 to Fri, 04/30/2021
Full Description: 

When a global health crisis emerges, students at all levels turn to their science teachers for information and, at times, reassurance, according to researchers at Horizon Research, Inc. (HRI). Science teachers serve a critically important public health function and become an important part of the nation's response efforts. Given the magnitude of the current COVID-19 crisis, it is likely that students are bringing their questions and concerns to their science teachers. As this award is made, nearly all K-12 school buildings in the U.S. are closed, and science teachers face unprecedented challenges in carrying out the instruction for which they are responsible while simultaneously addressing students' questions about COVID-19. Moreover, they must do this within new instructional formats. Education is crucial for helping students to understand the facts about the virus, despite much conflicting information and misinformation available. Education helps students understand and actively participate in measures to stop the spread of COVID-19. This award will support a national research study on how teachers are helping students respond to COVID-19. The findings will inform the development of curriculum materials for teaching about COVID-19, which are much needed right now, and help science teachers to adapt their instruction as they help to fulfill a critical public health function. This study will enable a better understanding of the role that science teachers can play in a national response, both now and in future crises.

The research will build on a study of science teachers conducted by HRI following the Ebola outbreak of 2014. Specifically, the research will investigate (1) where teachers of science get their information about coronavirus and COVID-19; (2) what types of resources teachers find most useful; (3) what factors influence whether science teachers address COVID-19 in their instruction; and (4) how science teachers adapt their teaching in response to COVID-19. HRI will recruit a nationally representative sample of several thousand K-12 teachers of science and invite them to complete a survey about their instruction related to COVID-19, both before school buildings closed and after. Using the Theory of Planned Behavior, the survey will be constructed to identify factors that predict whether teachers take up the topic. The survey will also collect data about how teachers address the virus and its transmission with their students. HRI will disaggregate survey data by school-, class-, student-, and teacher-level variables to identify patterns in student opportunities. Survey data will be supplemented by interviews with 50 survey respondents to gather more in-depth information related to the constructs of interest. Study findings will be immediately shared through a preliminary report that focuses on the survey data; mainstream print media using press releases; and social media partnering with the National Science Teaching Association. HRI also will publish policy briefs intended as guidance for schools, districts, and states; and research articles.

Leveraging Simulations in Preservice Preparation to Improve Mathematics Teaching for Students with Disabilities (Collaborative Research: Cohen)

This project aims to support the mathematics learning of students with disabilities through the development and use of mixed reality simulations for elementary mathematics teacher preparation. These simulations represent low-stakes opportunities for preservice teachers to practice research-based instructional strategies to support mathematics learning, and to receive feedback on their practices.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
2009939
Funding Period: 
Fri, 05/01/2020 to Tue, 04/30/2024
Full Description: 

The preparation of general education teachers to support the mathematics learning of students with disabilities is critical, as students with disabilities are overrepresented in the lower ranks of mathematics achievement. This project aims to address this need in the context of elementary mathematics teacher preparation through the development and use of mixed reality simulations. These simulations represent low-stakes opportunities for preservice teachers to practice research-based instructional strategies to support mathematics learning, and to receive feedback on their practices. Learning units that use the simulations will focus on two high leverage practices: teacher modeling of self-monitoring and reflection strategies during problem solving and using strategy instruction to teach students to support problem solving. These high-leverage teaching practices will support teachers engaging all students, including students with disabilities, in conceptually sophisticated mathematics in which students are treated as sense-makers and empowered to do mathematics in culturally meaningful ways.

The project work encompasses three primary aims. The first aim is to develop a consensus around shared definitions of high-leverage practices across the mathematics education and special education communities. To accomplish this goal, the project will convene a series of consensus-building panels with mathematics education and special education experts to develop shared definitions of the two targeted high leverage practices. This work will include engaging with current research, group discussion, and production of documents with specifications for the practices. The second aim is to develop learning units for elementary mathematics methods courses grounded in mixed reality simulation. These simulations will allow teacher candidates to enact the high leverage practices with simulated students and to receive coaching on their practice from the research team. The impact of this work will be assessed through the analysis of interviews with teacher educators implementing the units and observations and artifacts from the implementations. The third aim will be to assess the effectiveness of the simulations on teacher candidates? practices and beliefs through small-scaled randomized control trials. Teacher candidates will be randomly assigned to conditions that address the practices and make use of simulations, and a business as usual condition focused on lesson planning, student assessment, and small group discussions of the high leverage practices. The impact of the work will be assessed through the analysis of baseline and exit simulations, measures of teacher self-efficacy for teaching students with disabilities, and observations of classroom teaching in their clinical placement settings.

Leveraging Simulations in Preservice Preparation to Improve Mathematics Teaching for Students with Disabilities (Collaborative Research: Jones)

This project aims to support the mathematics learning of students with disabilities through the development and use of mixed reality simulations for elementary mathematics teacher preparation. These simulations represent low-stakes opportunities for preservice teachers to practice research-based instructional strategies to support mathematics learning, and to receive feedback on their practices.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
2010298
Funding Period: 
Fri, 05/01/2020 to Tue, 04/30/2024
Full Description: 

The preparation of general education teachers to support the mathematics learning of students with disabilities is critical, as students with disabilities are overrepresented in the lower ranks of mathematics achievement. This project aims to address this need in the context of elementary mathematics teacher preparation through the development and use of mixed reality simulations. These simulations represent low-stakes opportunities for preservice teachers to practice research-based instructional strategies to support mathematics learning, and to receive feedback on their practices. Learning units that use the simulations will focus on two high leverage practices: teacher modeling of self-monitoring and reflection strategies during problem solving and using strategy instruction to teach students to support problem solving. These high-leverage teaching practices will support teachers engaging all students, including students with disabilities, in conceptually sophisticated mathematics in which students are treated as sense-makers and empowered to do mathematics in culturally meaningful ways.

The project work encompasses three primary aims. The first aim is to develop a consensus around shared definitions of high-leverage practices across the mathematics education and special education communities. To accomplish this goal, the project will convene a series of consensus-building panels with mathematics education and special education experts to develop shared definitions of the two targeted high leverage practices. This work will include engaging with current research, group discussion, and production of documents with specifications for the practices. The second aim is to develop learning units for elementary mathematics methods courses grounded in mixed reality simulation. These simulations will allow teacher candidates to enact the high leverage practices with simulated students and to receive coaching on their practice from the research team. The impact of this work will be assessed through the analysis of interviews with teacher educators implementing the units and observations and artifacts from the implementations. The third aim will be to assess the effectiveness of the simulations on teacher candidates? practices and beliefs through small-scaled randomized control trials. Teacher candidates will be randomly assigned to conditions that address the practices and make use of simulations, and a business as usual condition focused on lesson planning, student assessment, and small group discussions of the high leverage practices. The impact of the work will be assessed through the analysis of baseline and exit simulations, measures of teacher self-efficacy for teaching students with disabilities, and observations of classroom teaching in their clinical placement settings.

International Mind, Brain and Education Society (IMBES): 2020 Biennial Conference

This award will support teacher practitioners from the U.S. to attend the 2020 International Mind, Brain, and Education Society (IMBES) conference. The IMBES conference is an opportunity for scholars and educators to come together to engage in reciprocal dialogue about research and practice in biology, education, and the cognitive and developmental sciences.

Lead Organization(s): 
Award Number: 
2016241
Funding Period: 
Sun, 03/15/2020 to Thu, 12/31/2020
Full Description: 

The International Mind, Brain, and Education Society (IMBES) conference has taken place every 2-3 years since 2007. IMBES aims to facilitate cross-cultural collaboration in biology, education, and the cognitive and developmental sciences. The IMBES meeting is an opportunity for scholars and educators to come together to engage in reciprocal dialogue about research and practice. Researchers investigating learning processes have the opportunity to share results with educators and receive feedback on the translational opportunities for the research. Educators can update their understanding of the cognitive and neural bases of learning and impart their knowledge of efficacious techniques, tools, and classroom practices with researchers. This type of interaction between researchers and practitioners is crucial for generating research that contributes to usable knowledge for education. This conference aims to assess the degree to which scientific ideas are ready for the classroom, consider the extent to which further educational research is still required, evaluate the potential of current research in meaningfully shaping pedagogy, and recognize opportunities to use the classroom to challenge the robustness of research.

This award to Temple University will provide partial support for the International, Mind, Brain, and Education Society (IMBES) conference to be held in Montreal in June 2020. This award will specifically support teacher practitioners from the U.S. to attend the conference and learn more about educational neuroscience and its potential implications for practice. The teacher practitioners will also have opportunities to share with researchers the nature of effective educational practice.

Evolving Minds: Promoting Causal-Explanatory Teaching and Learning of Biological Evolution in Elementary School

Adopting a teaching and curricular approach that will be novel in its integration of custom explanatory storybook materials with hands-on investigations, this project seeks to promote third grade students' understanding of small- and large-scale evolution by natural selection. By studying students across multiple school districts, this research will shed light on the benefits to diverse students of instruction that focuses on supporting children's capacities to cogently explain aspects of the biological world rather than learn disparate facts about it.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
2009176
Funding Period: 
Mon, 06/01/2020 to Fri, 05/31/2024
Full Description: 

Natural selection is a fundamental mechanism of evolution, the unifying principle of biology. It is central to understanding the functional specialization of living things, the origin of species diversity and the inherent unity of biological life. Despite the early emergence of tendencies that can make evolution increasingly challenging to learn over time, natural selection is currently not taught until middle or high school. This is long after patterns of misunderstanding are likely to have become more entrenched. The current research responds to this situation. It targets elementary school as the time to initiate comprehensive instruction on biological evolution. Adopting a teaching and curricular approach that will be novel in its integration of custom explanatory storybook materials with hands-on investigations, it seeks to promote third grade students' understanding of small- and large-scale evolution by natural selection. By studying students across multiple school districts, this research will shed light on the benefits to diverse students of instruction that focuses on supporting children's capacities to cogently explain aspects of the biological world rather than learn disparate facts about it. It will also illuminate the value of simple tools, like explanatory storybooks, for elementary school teachers who are often expected to teach counterintuitive topics such as natural selection while not feeling confident in their own understanding.

This project will investigate changes in Grade 3 students' learning and reasoning about living things during implementation of a guided inquiry curriculum unit on evolution by natural selection that emphasizes causal-mechanistic explanation. Classroom inquiry activities and investigations into a range of real-world phenomena will be framed by engagement with a sequence of innovative custom causal-explanatory storybook, animation and writing prompt materials that were developed under prior NSF support to promote transferable, scientifically accurate theory- and evidence-based reasoning about natural selection. In response to the distinctive challenges of life science and evolution learning, the project will integrate and thematically unify currently disparate Next Generation Science Standards (NGSS) content and practice standards to create a comprehensive unit that addresses all three NGSS dimensions and is accompanied by evidence-based approaches to teacher professional development (PD). Using a design based research approach, and informed by cognitive developmental findings, this 4-year project will engage at least 700 students and their teachers and include partners from at least four school districts, Boston University, and TERC.

Improving the Teaching of Genetics in High School to Avoid Instilling Misconceptions about Gender Differences (Collaborative Research: Riegle-Crumb)

This project will study the aspects of genetics instruction that affect students' beliefs in neurogenetic essentialism, which is implicated in lowering girls' sense of STEM abilities, feeling of belonging in STEM classes, and interest in pursuing further education in STEM fields. The goal of the project is to answer important questions about how to teach genetics at the high school level in a manner that is scientifically accurate but does not have these detrimental side effects.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1956119
Funding Period: 
Wed, 07/01/2020 to Mon, 06/30/2025
Full Description: 

Recent research suggests that learning about genetics during high school biology can lead to a belief that inherent differences in the genes and brains of men and women are the main causes of gender differences in behavior and intellectual abilities (a belief known as neurogenetic essentialism). This belief is implicated in lowering girls' sense of their own STEM abilities, their feelings of belonging in STEM classes, and their interest in pursuing further education in STEM fields. The goal of this project, led by a team of researchers at Biological Sciences Curriculum Study, the University of Texas, Austin, and New York University is to answer important questions about how to teach genetics at the high school level in a manner that is scientifically accurate, but does not have these detrimental side effects. Specifically, this new line of experimental research will identify and revise the content in common genetics instruction that promotes the belief in neurogenetic essentialism. The proposed experiments will also explore how the beliefs of peers and teachers contribute to changes in such beliefs in students. This work has further implications for how the topic of differences between men and women is addressed during high school biology education. Furthermore, the research findings will advance theory on factors that contribute to gender disparities in STEM attitudes and aspirations.

Building on preliminary evidence, this project aims to accomplish four key goals. First, the project will study which specific aspects of genetics instruction affect students' beliefs in neurogenetic essentialism. Second, the project will identify the cognitive mechanisms through which these effects occur. Third, the project will uncover the downstream effects of revised genetics instructional materials on a broad range of motivational variables relevant to STEM pursuit, such as implicit person theories, sense of belonging in STEM, and interest in this domain. Fourth, the project will explore the contextual factors (e.g., teacher and peer beliefs) that may moderate or mediate how students respond to the instructional materials. The research team will develop and iteratively refine genetics educational materialsthat teach about genetic, neurological, and behavioral variation within and between sexes, as well as the social causes of such differences. The research team will then test the effectiveness of these revised materials through two large-scale randomized control trials, one targeting students directly and one targeting students' learning via their teachers. The results of this project will produce generalizable knowledge regarding the cognitive, sociological, and educational factors that contribute to STEM gender disparities.

Responding to an Emerging Epidemic through Science Education

This research project will produce curricular materials designed to help students learn about viral epidemics as both a scientific and social issue. It will engage students in scientific modeling of the epidemic and in critical analyses of media and public health information about the virus. This approach helps students connect their classroom learning experiences with their lives beyond school, a key characteristic of science literacy.

Partner Organization(s): 
Award Number: 
2023088
Funding Period: 
Sun, 03/01/2020 to Sun, 02/28/2021
Full Description: 

At this moment, there is global concern about the coronavirus disease 2019 (COVID-19) and its potential to become an epidemic in the U.S. and other countries. Reports of past studies on student understanding of epidemics and how they are taught in school indicate that teachers are reticent to teach the material because the science is unclear given the emerging nature of evidence, or because they don?t understand it well themselves. Curricular resources are limited. Consequently, many students are left on their own to grapple with a potential public health emergency that could affect them and their families. The problem is further complicated by misinformation that may be spread through social media. There is less public understanding about the science of the virus and how it spreads; the risk of being infected; treatment, or, the severity of the illness. This research project will produce curricular materials designed to help students learn about viral epidemics as both a scientific and social issue. It will engage students in scientific modeling of the epidemic and in critical analyses of media and public health information about the virus. This approach helps students connect their classroom learning experiences with their lives beyond school, a key characteristic of science literacy. This project is an example of how science education can be both engaging and relevant.

Researchers at the University of North Carolina and the University of Missouri have been studying how to teach about issues at the crossroads of science and social concerns such as community health; they have developed a framework to build curriculum materials focused on student learning of such complex issues through modeling and inquiry. For this study on the coronavirus disease 2019 (COVID-19); first, the researchers will study student responses to the epidemic in real time, collecting data on student initial understandings and concerns. Then, using this information, they will work with 7 high school science teachers familiar with their framework to build a prototype curriculum unit, and test it in classrooms in 4 high schools selected for their socio-economic and ethnic/racial diversity. The study will gather data on student interest in the epidemic, as well as how students access information about it through various forms of media, and how they vet news reports and social media. The researchers will also use pre- and post-test data to assess student learning. After this initial enactment of the curriculum materials developed to teach about the epidemic, researchers and teachers will revise the curriculum materials to make them more effective. The final products will be a curriculum unit that will be readily available and modifiable for teaching and learning about future epidemics, as well as greater understanding about how students deal with vast amounts of information about societal issues that affect their immediate lives and the science behind them.

CAREER: Exploring Teacher Noticing of Students' Multimodal Algebraic Thinking

This project investigates and expands teachers' learning to notice in two important ways. First, the research expands beyond teachers' noticing of written and verbal thinking to attend to gesture and other aspects of embodied and multimodal thinking. Second, the project focuses on algebraic thinking and seeks specifically to understand how teacher noticing relates to the content of algebra. Bringing together multimodal thinking and the mathematical ideas in algebra has the potential to support teachers in providing broader access to algebraic thinking for more students.

Award Number: 
1942580
Funding Period: 
Mon, 06/01/2020 to Sat, 05/31/2025
Full Description: 

Effective teachers of mathematics attend to and respond to the substance of students' thinking in supporting classroom learning. Teacher professional development programs have supported teachers in learning to notice students' mathematical thinking and using that noticing to make instructional decisions in the classroom. This project investigates and expands teachers' learning to notice in two important ways. First, the research expands beyond teachers' noticing of written and verbal thinking to attend to gesture and other aspects of embodied and multimodal thinking. Second, the project focuses on algebraic thinking and seeks specifically to understand how teacher noticing relates to the content of algebra. Bringing together multimodal thinking and the mathematical ideas in algebra has the potential to support teachers in providing broader access to algebraic thinking for more students.

To study teacher noticing of multimodal algebraic thinking, this project will facilitate video club sessions in which teachers examine and annotate classroom video. The video will allow text-based and visual annotation of the videos to obtain rich portraits of the thinking that teachers notice as they examine algebra-related middle school practice. The research team will create a video library focused on three main algebraic thinking areas: equality, functional thinking, and proportional reasoning. Clips will be chosen that feature multimodal student thinking about these content areas, and provide moments that would be fruitful for advancing student thinking. Two cohorts of preservice teachers will engage in year-long video clubs using this video library, annotate videos using an advanced technological tool, and engage in reflective interviews about their noticing practices. Follow-up classroom observations will be conducted to see how teachers then notice multimodal algebraic thinking in their classrooms. Materials to conduct the video clubs in other contexts and the curated video library will be made available, along with analyses of the teacher learning that resulted from their implementation.

Pages

Subscribe to Curricula/Activities