Curricula/Activities

Streams of Data: Nurturing Data Literacy in Young Science Learners (Collaborative Research: Kochevar)

This project will develop an approach to support fourth grade students' data literacy with complex, large-scale, professionally collected data sets. The work will focus on analytical thinking as a subset of data literacy, specifically evaluating and interpreting data. The project will teach students about working with geoscience data, which connect to observable, familiar aspects of the natural world and align with Earth science curriculum standards.

Partner Organization(s): 
Award Number: 
1906264
Funding Period: 
Mon, 07/01/2019 to Thu, 06/30/2022
Full Description: 

These skills are essential for working with scientific data sets, but educators know very little about how to prepare students for the issues involved in making appropriate inferences from data. The need is compounded by the fact that studies that exist have worked with data sets that students themselves collected, whereas the many electronic data sets, proliferating in the public domain, pose different challenges. This project will develop an approach to support fourth grade students' data literacy with complex, large-scale, professionally collected data sets. The work will focus on analytical thinking as a subset of data literacy, specifically evaluating and interpreting data. The project will teach students about working with geoscience data, which connect to observable, familiar aspects of the natural world and align with Earth science curriculum standards. An interdisciplinary team of educators, researchers, and scientists from the Oceans of Data Institute at Educational Development Center and the American Geological Institute will (1) conduct baseline research to understand students' natural affinities for understanding inference from complex data and phenomena; (2) develop and test scaffolding activities that leverage students' intellectual assets and minimize barriers to analytical thinking with professionally collected data; and (3) examine the degree to which the resulting activities support students to do productive work with professionally collected data. In developing an instructional approach, the project informs generally how professionally collected, scientific data can be used to support elementary students to develop data literacy skills.

Hypothesizing that science, technology, engineering, and mathematics (STEM) education generally can benefit from the instructional use of complex, large, interactive, and professionally-collected (CLIP) data sets (e.g., related to precipitation, stream flow, and groundwater levels), this study will explore approaches to integrating those data into fourth grade classroom instruction. The research is based on a premise that students who engage with CLIP data early in their classroom STEM experiences will develop skills and attitudes that promote meaningful analyses of those data earlier than if that exposure is delayed until secondary courses. The project will use a three-phase iterative design that will unfold in three urban and suburban school districts in Virginia and Maryland. Phase one will focus on creating a baseline of the reasoning students employ when making inferences from data. It will involve 45 students from grades 3-5 in targeted interviews, which will be recorded, transcribed and analyzed. Phases two and three will focus on design and development in grade 4. Phase two will develop and test activities through an iterative design plan that employs a semi-clinical method with small groups of students. Phase three will implement the activities that result from that process in six classrooms across three districts with approximately 150 students. A scoring rubric that captures student learning will be constructed in phase two and used to measure impacts of the field testing in phase three. Observations and interviews will also be conducted at field sites to understand what students learn about analytical thinking from the activities.

Aligning the Science Teacher Education Pathway: A Networked Improvement Community

This project will study the activities of a Networked Improvement Community (NIC) as a vehicle to bridge gaps across four identified steps along the science teacher training and development pathways within local contexts of 8 participating universities. The overarching goal of the project is to strengthen the capacity of universities and school districts to reliably produce teachers of science who are knowledgeable about and can effectively enact the Next Generation Science Standards (NGSS), although prepared in varied organizational contexts.

Award Number: 
1908900
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Full Description: 

California State University will study the activities of a Networked Improvement Community (NIC) as a vehicle to bridge gaps across four identified steps along the science teacher training and development pathways within local contexts of 8 participating universities (NIC sites). Networked Improvement Community (NIC) will co-create a shared vision and co-defined research agenda between university researchers, science educators and school district practitioners working together to reform teacher education across a variety of local contexts. By studying outcomes of shared supports and teacher tools for use in multiple steps along the science teacher education pathway, researchers will map variation existing in the system and align efforts across the science teacher education pathway. This process will integrate an iterative nature of educational change in local contexts impacting enactment of the NGSS in both university teacher preparation programs and in school district professional training activities and classrooms.

The overarching goal of the project is to strengthen the capacity of universities and school districts to reliably produce teachers of science who are knowledgeable about and can effectively enact the Next Generation Science Standards (NGSS), although prepared in varied organizational contexts. The project will accomplish this goal 1) leveraging the use of an established Networked Improvement Community, composed of science education faculty from eight university campuses and by 2) improving and studying coherence in the steps along the science teacher education pathway within and across these universities and school districts. The project will use a mixed methods approach to data collection and analysis. Consistent with Improvement Science Theory, research questions will be co-defined by all stakeholders.

Building a Teacher Knowledge Base for the Implementation of High-Quality Instructional Resources through the Collaborative Investigation of Video Cases (Collaborative Research: Murray)

This project will address the pressing national need to generate shared, practice-based knowledge about how to implement freely available, high-quality instructional resources (mathematics formative assessment lessons) that have been shown to produce significant gains in student learning outcomes. It will expand a professional development model (Analyzing Instruction in Mathematics using the Teaching for Robust Understanding Framework (AIM-TRU)) that supports teacher learning about effective lesson implementation.

Lead Organization(s): 
Award Number: 
1908319
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Full Description: 

This project will address the pressing national need to generate shared, practice-based knowledge about how to implement freely available, high-quality instructional resources (mathematics formative assessment lessons) that have been shown to produce significant gains in student learning outcomes. It will expand a professional development model (Analyzing Instruction in Mathematics using the Teaching for Robust Understanding Framework (AIM-TRU)) that supports teacher learning about effective lesson implementation. The backbone of AIM-TRU is a growing, open repository of video cases available to teachers and teacher educators across the U.S. who use or are interested in using the lessons. The repository will include tools such as a facilitator's guide to support teachers and teacher educators to engage in the model and collaboratively investigate the video cases. Consequently, the work will have the potential to engage teachers and teacher educators in improving mathematics education at scale. Because the video cases will capture implementation and ideas for improving instruction in schools serving populations who are underrepresented in mathematics, AIM-TRU will serve to improve mathematics education equitably.

Research questions focus on what teachers learn about high-quality mathematics instruction and instructional materials within a community of practice, and how that learning influences their teaching. In AIM-TRU, teachers engage in the collaborative investigation of video cases utilizing a shared repertoire that includes questioning protocols adapted from the Teaching for Robust Understanding (TRU) framework. This framework articulates five dimensions of classroom instruction that are necessary and sufficient to support students in becoming powerful mathematical thinkers. This affords teachers opportunities to use the TRU dimensions as lenses to diagnose common problems of practice that arise in implementation, and propose innovations and theories for improving instruction that can be tested in real classrooms and documented in new video cases. Analytic tools will be used from frame analysis to produce empirical evidence of what teachers are learning about instruction and instructional materials along the five dimensions of TRU. These data will be mapped to a random sample of video recordings of participating teachers' instruction, scored using the TRU Math Rubric, in order to link learning outcomes from the professional development to changes in instruction. Addressing these research questions will provide a deeper understanding and empirical evidence of learning within teacher collectives, the pressing national need to develop mechanisms to produce collective professional knowledge for teaching, and further efforts to understand the types of knowledge required for effective teaching.

Building a Teacher Knowledge Base for the Implementation of High-Quality Instructional Resources through the Collaborative Investigation of Video Cases (Collaborative Research: Jabon)

This project will address the pressing national need to generate shared, practice-based knowledge about how to implement freely available, high-quality instructional resources (mathematics formative assessment lessons) that have been shown to produce significant gains in student learning outcomes. It will expand a professional development model (Analyzing Instruction in Mathematics using the Teaching for Robust Understanding Framework (AIM-TRU)) that supports teacher learning about effective lesson implementation.

Lead Organization(s): 
Award Number: 
1908311
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Full Description: 

This project will address the pressing national need to generate shared, practice-based knowledge about how to implement freely available, high-quality instructional resources (mathematics formative assessment lessons) that have been shown to produce significant gains in student learning outcomes. It will expand a professional development model (Analyzing Instruction in Mathematics using the Teaching for Robust Understanding Framework (AIM-TRU)) that supports teacher learning about effective lesson implementation. The backbone of AIM-TRU is a growing, open repository of video cases available to teachers and teacher educators across the U.S. who use or are interested in using the lessons. The repository will include tools such as a facilitator's guide to support teachers and teacher educators to engage in the model and collaboratively investigate the video cases. Consequently, the work will have the potential to engage teachers and teacher educators in improving mathematics education at scale. Because the video cases will capture implementation and ideas for improving instruction in schools serving populations who are underrepresented in mathematics, AIM-TRU will serve to improve mathematics education equitably.

Research questions focus on what teachers learn about high-quality mathematics instruction and instructional materials within a community of practice, and how that learning influences their teaching. In AIM-TRU, teachers engage in the collaborative investigation of video cases utilizing a shared repertoire that includes questioning protocols adapted from the Teaching for Robust Understanding (TRU) framework. This framework articulates five dimensions of classroom instruction that are necessary and sufficient to support students in becoming powerful mathematical thinkers. This affords teachers opportunities to use the TRU dimensions as lenses to diagnose common problems of practice that arise in implementation, and propose innovations and theories for improving instruction that can be tested in real classrooms and documented in new video cases. Analytic tools will be used from frame analysis to produce empirical evidence of what teachers are learning about instruction and instructional materials along the five dimensions of TRU. These data will be mapped to a random sample of video recordings of participating teachers' instruction, scored using the TRU Math Rubric, in order to link learning outcomes from the professional development to changes in instruction. Addressing these research questions will provide a deeper understanding and empirical evidence of learning within teacher collectives, the pressing national need to develop mechanisms to produce collective professional knowledge for teaching, and further efforts to understand the types of knowledge required for effective teaching.

Building a Teacher Knowledge Base for the Implementation of High-Quality Instructional Resources through the Collaborative Investigation of Video Cases (Collaborative Research: Wilson)

This project will address the pressing national need to generate shared, practice-based knowledge about how to implement freely available, high-quality instructional resources (mathematics formative assessment lessons) that have been shown to produce significant gains in student learning outcomes. It will expand a professional development model (Analyzing Instruction in Mathematics using the Teaching for Robust Understanding Framework (AIM-TRU)) that supports teacher learning about effective lesson implementation.

Lead Organization(s): 
Award Number: 
1908185
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Full Description: 

This project will address the pressing national need to generate shared, practice-based knowledge about how to implement freely available, high-quality instructional resources (mathematics formative assessment lessons) that have been shown to produce significant gains in student learning outcomes. It will expand a professional development model (Analyzing Instruction in Mathematics using the Teaching for Robust Understanding Framework (AIM-TRU)) that supports teacher learning about effective lesson implementation. The backbone of AIM-TRU is a growing, open repository of video cases available to teachers and teacher educators across the U.S. who use or are interested in using the lessons. The repository will include tools such as a facilitator's guide to support teachers and teacher educators to engage in the model and collaboratively investigate the video cases. Consequently, the work will have the potential to engage teachers and teacher educators in improving mathematics education at scale. Because the video cases will capture implementation and ideas for improving instruction in schools serving populations who are underrepresented in mathematics, AIM-TRU will serve to improve mathematics education equitably.

Research questions focus on what teachers learn about high-quality mathematics instruction and instructional materials within a community of practice, and how that learning influences their teaching. In AIM-TRU, teachers engage in the collaborative investigation of video cases utilizing a shared repertoire that includes questioning protocols adapted from the Teaching for Robust Understanding (TRU) framework. This framework articulates five dimensions of classroom instruction that are necessary and sufficient to support students in becoming powerful mathematical thinkers. This affords teachers opportunities to use the TRU dimensions as lenses to diagnose common problems of practice that arise in implementation, and propose innovations and theories for improving instruction that can be tested in real classrooms and documented in new video cases. Analytic tools will be used from frame analysis to produce empirical evidence of what teachers are learning about instruction and instructional materials along the five dimensions of TRU. These data will be mapped to a random sample of video recordings of participating teachers' instruction, scored using the TRU Math Rubric, in order to link learning outcomes from the professional development to changes in instruction. Addressing these research questions will provide a deeper understanding and empirical evidence of learning within teacher collectives, the pressing national need to develop mechanisms to produce collective professional knowledge for teaching, and further efforts to understand the types of knowledge required for effective teaching.

Getting Unstuck: Designing and Evaluating Teacher Resources to Support Conceptual and Creative Fluency with Programming

The project will create opportunities for teachers to develop programming content knowledge and new understandings of the creative possibilities in computer science education, thereby increasing opportunities for students to develop conceptual and creative fluency with programming.

Lead Organization(s): 
Award Number: 
1908110
Funding Period: 
Mon, 07/01/2019 to Wed, 06/30/2021
Full Description: 

The project will create opportunities for teachers to develop programming content knowledge and new understandings of the creative possibilities in computer science education, thereby increasing opportunities for students to develop conceptual and creative fluency with programming. K-12 introductory programming experiences are often highly scaffolded, and it can be challenging for students to transition from constrained exercises to open-ended programming activities encountered later in-and out of-school. Teachers can provide critical support to help students solve problems and develop the cognitive, social, and emotional capacities required for conceptually and creatively complex programming challenges. Teachers - particularly elementary and middle school teachers, especially in rural and Title I schools - often lack the programming content knowledge, skills, and practices needed to support deeper and more meaningful programming experiences for students. Professional development opportunities can cultivate teacher expertise, especially when supported by curricular materials that bridge teachers' professional learning and students' classroom learning. This research responds to these needs, addressing key national priorities for increasing access to high-quality K-12 computer science education for all students through teacher professional development.

The project will involve the design and evaluation of (1) an online learning experience for teachers to develop conceptual and creative fluency through short, daily programming prompts (featuring the Scratch programming environment), and (2) educative curricular materials for the classroom (based on the online experience). The online experience and curricular materials will be developed in collaboration with three 4th through 6th-grade rural or Title I teachers. The project will evaluate teacher learning in the online experience using mixed-methods analyses of pre/post-survey data of teachers' perceived expertise and quantitative analyses of teachers' programs and evolving conceptual knowledge. Three additional 4th through 6th-grade teachers will pilot the curricular materials in their classrooms. The six pilot teachers will maintain field journals about their experiences and will participate in interviews, evaluating use of the resources in practice. An ethnography of one teacher's classroom will be developed to further contribute to understandings of the classroom-level resources in action, including students' experiences and learning. Student learning will be evaluated through student interviews and analyses of student projects. Project outcomes will inform how computer science conceptual knowledge and creative fluency can be developed both for teachers and their students' knowledge and fluency that will be critical for students' future success in work and life.

Building Students' Data Literacy through the Co-design of Curriculum by Mathematics and Art Teachers (Collaborative Research: Matuk)

This project aims to enact and study the co-design of classroom activities by mathematics and visual arts teachers to promote middle school students' data literacy.

Lead Organization(s): 
Award Number: 
1908557
Funding Period: 
Mon, 07/01/2019 to Wed, 06/30/2021
Full Description: 

The aim of this project is to enact and study a process in which middle school teachers of mathematics and visual arts co-design and teach activities that combine math and art to teach data science. Many existing efforts to promote data literacy are grounded in mathematical concepts of central tendency and variation, and typically are narrowly focused in single subject domains. Taking an art-based perspective on data science has the potential to promote student relevance, accessibility, engagement, reasoning, and meaning-making with data science. Moreover, visualization technology has advanced to a degree that the relation between the information in data and visual aesthetic can be leveraged easily. To explore the opportunity this offers, research on this project will examine how to equip teachers to develop such interdisciplinary pedagogical approaches to cultivate their students' data literacy. This exploratory project will provide support for 12 teachers during summer workshops and during the school year as these teachers implement their co-designed units in their classrooms. The work addresses the following questions: (1) How do we support effective co-design of data literacy units among art teachers, mathematics teachers, and researchers? (2) How are teachers able to use the unit materials in their classrooms to engage students in data literacy? And (3) How does an art-based approach support students' data literacy? Answers to these questions will build an understanding of how to support interdisciplinary curriculum design collaborations among researchers and teachers. They will also show how art-integrated, maker-oriented activities can support middle school learners' data literacy development; and how to design technologies that are accessible and powerful to teachers and learners in these interdisciplinary environments.

Through summer workshops and year-round design collaborations, the project will iteratively design, test and refine four units for middle school classrooms, including activities, tools, and assessments, to promote students' data literacy. Data will be collected from co-design sessions as well as classroom-enactments, and will include observations, video/audio recordings, student- and teacher-generated artifacts, and pre and post assessments of students' knowledge and self-efficacy. Mixed methods analyses of these data, and syntheses of findings across participants, classroom enactments, and project years, will explore effective ways to support co-design among art teachers, mathematics teachers, and researchers; and the impact of art-integrated activities on students' data literacy. This project will reach 12 teachers and their students across 6 New York city schools. By building capacity and knowledge about how to initiate and sustain teachers' interdisciplinary curriculum collaborations, the project will have broader impact. Refined project materials, including pedagogical approaches, toolkits and adaptable classroom activities, will be disseminated to facilitate classroom adoption by other educators who wish to undertake similar art-integrated data literacy curriculum design collaborations, and will thus ultimately broaden participation in data science among diverse youth within and beyond New York City.

Building Students' Data Literacy through the Co-design of Curriculum by Mathematics and Art Teachers (Collaborative Research: Vacca)

The aim of this project is to enact and study a process in which middle school teachers of mathematics and visual arts co-design and teach activities that combine math and art to teach data science.

Lead Organization(s): 
Award Number: 
1908142
Funding Period: 
Mon, 07/01/2019 to Wed, 06/30/2021
Full Description: 

The aim of this project is to enact and study a process in which middle school teachers of mathematics and visual arts co-design and teach activities that combine math and art to teach data science. Many existing efforts to promote data literacy are grounded in mathematical concepts of central tendency and variation, and typically are narrowly focused in single subject domains. Taking an art-based perspective on data science has the potential to promote student relevance, accessibility, engagement, reasoning, and meaning-making with data science. Moreover, visualization technology has advanced to a degree that the relation between the information in data and visual aesthetic can be leveraged easily. To explore the opportunity this offers, research on this project will examine how to equip teachers to develop such interdisciplinary pedagogical approaches to cultivate their students' data literacy. This exploratory project will provide support for 12 teachers during summer workshops and during the school year as these teachers implement their co-designed units in their classrooms. The work addresses the following questions: (1) How do we support effective co-design of data literacy units among art teachers, mathematics teachers, and researchers? (2) How are teachers able to use the unit materials in their classrooms to engage students in data literacy? And (3) How does an art-based approach support students' data literacy? Answers to these questions will build an understanding of how to support interdisciplinary curriculum design collaborations among researchers and teachers. They will also show how art-integrated, maker-oriented activities can support middle school learners' data literacy development; and how to design technologies that are accessible and powerful to teachers and learners in these interdisciplinary environments.

Through summer workshops and year-round design collaborations, the project will iteratively design, test and refine four units for middle school classrooms, including activities, tools, and assessments, to promote students' data literacy. Data will be collected from co-design sessions as well as classroom-enactments, and will include observations, video/audio recordings, student- and teacher-generated artifacts, and pre and post assessments of students' knowledge and self-efficacy. Mixed methods analyses of these data, and syntheses of findings across participants, classroom enactments, and project years, will explore effective ways to support co-design among art teachers, mathematics teachers, and researchers; and the impact of art-integrated activities on students' data literacy. This project will reach 12 teachers and their students across 6 New York city schools. By building capacity and knowledge about how to initiate and sustain teachers' interdisciplinary curriculum collaborations, the project will have broader impact. Refined project materials, including pedagogical approaches, toolkits and adaptable classroom activities, will be disseminated to facilitate classroom adoption by other educators who wish to undertake similar art-integrated data literacy curriculum design collaborations, and will thus ultimately broaden participation in data science among diverse youth within and beyond New York City.

Building Students' Data Literacy through the Co-design of Curriculum by Mathematics and Art Teachers (Collaborative Research: Silander)

The aim of this project is to enact and study a process in which middle school teachers of mathematics and visual arts co-design and teach activities that combine math and art to teach data science.

Award Number: 
1908030
Funding Period: 
Mon, 07/01/2019 to Wed, 06/30/2021
Full Description: 

The aim of this project is to enact and study a process in which middle school teachers of mathematics and visual arts co-design and teach activities that combine math and art to teach data science. Many existing efforts to promote data literacy are grounded in mathematical concepts of central tendency and variation, and typically are narrowly focused in single subject domains. Taking an art-based perspective on data science has the potential to promote student relevance, accessibility, engagement, reasoning, and meaning-making with data science. Moreover, visualization technology has advanced to a degree that the relation between the information in data and visual aesthetic can be leveraged easily. To explore the opportunity this offers, research on this project will examine how to equip teachers to develop such interdisciplinary pedagogical approaches to cultivate their students' data literacy. This exploratory project will provide support for 12 teachers during summer workshops and during the school year as these teachers implement their co-designed units in their classrooms. The work addresses the following questions: (1) How do we support effective co-design of data literacy units among art teachers, mathematics teachers, and researchers? (2) How are teachers able to use the unit materials in their classrooms to engage students in data literacy? And (3) How does an art-based approach support students' data literacy? Answers to these questions will build an understanding of how to support interdisciplinary curriculum design collaborations among researchers and teachers. They will also show how art-integrated, maker-oriented activities can support middle school learners' data literacy development; and how to design technologies that are accessible and powerful to teachers and learners in these interdisciplinary environments.

Through summer workshops and year-round design collaborations, the project will iteratively design, test and refine four units for middle school classrooms, including activities, tools, and assessments, to promote students' data literacy. Data will be collected from co-design sessions as well as classroom-enactments, and will include observations, video/audio recordings, student- and teacher-generated artifacts, and pre and post assessments of students' knowledge and self-efficacy. Mixed methods analyses of these data, and syntheses of findings across participants, classroom enactments, and project years, will explore effective ways to support co-design among art teachers, mathematics teachers, and researchers; and the impact of art-integrated activities on students' data literacy. This project will reach 12 teachers and their students across 6 New York city schools. By building capacity and knowledge about how to initiate and sustain teachers' interdisciplinary curriculum collaborations, the project will have broader impact. Refined project materials, including pedagogical approaches, toolkits and adaptable classroom activities, will be disseminated to facilitate classroom adoption by other educators who wish to undertake similar art-integrated data literacy curriculum design collaborations, and will thus ultimately broaden participation in data science among diverse youth within and beyond New York City.

Young Mathematicians: Expanding an Innovative and Promising Model Across Learning Environments to Promote Preschoolers' Mathematics Knowledge

The goal of this design and development project is to address the critical need for innovative resources that transform the mathematics learning environments of preschool children from under-resourced communities by creating a cross-context school-home intervention.

Award Number: 
1907904
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Full Description: 

Far too many children in the U.S. start kindergarten lacking the foundational early numeracy skills needed for academic success. This project contributes to the goal of enhancing the learning and teaching of early mathematics in order to build a STEM-capable workforce and STEM-literate citizenry, which are both crucial to our nation's prosperity and competitiveness. Preparation for the STEM-workforce must start early, as young children's mathematics development undergirds cognitive development, building brain architecture, and supporting problem-solving, puzzling, and persevering, while strongly impacting and predicting future success in school. Preschool children from low socio-economic backgrounds are particularly at risk, as their mathematics knowledge may be up to a full year behind their middle-income peers. Despite agreements about the importance of mathematics-rich interactions for young children's learning and development, most early education teachers and families are not trained in evidence-based methods that can facilitate these experiences, making preschool learning environments (such as school and home) a critical target for intervention. The benefit of this project is that it will develop a robust model for a school-based intervention in early mathematics instruction. The model has the potential to broaden participation by providing instructional materials that support adult-child interaction and engagement in mathematics, explicitly promoting school-home connections in mathematics, and addressing educators' and families' attitudes toward mathematics while promoting children's mathematical knowledge and narrowing opportunity gaps.

The goal of this design and development project is to address the critical need for innovative resources that transform the mathematics learning environments of preschool children from under-resourced communities by creating a cross-context school-home intervention. To achieve this goal, qualitative and quantitative research methodologies will be employed, integrating data from multiple sources and stakeholders. Specifically, the project will: (1) engage in a materials design and development process that includes an iterative cycle of design, development, and implementation, collaborating with practitioners and families in real-world settings; (2) collect and analyze data from at least 40 Head Start classrooms, implementing the mathematics materials to ensure that the classroom and family mathematics materials and resources are engaging, usable, and comprehensible to preschoolers, teachers, and families; and (3) conduct an experimental study that will measure the impact of the intervention on preschool children's mathematics learning. The researchers will analyze collected data using hierarchical linear regression modeling to account for the clustering of children within classrooms. The researchers will also use a series of regression models and multi-level models to determine whether the intervention promotes student outcomes and whether it supports teachers' and families' positive attitudes toward mathematics.

Pages

Subscribe to Curricula/Activities