Curricula/Activities

Co-Designing for Statewide Alignment of a Vision for High-Quality Mathematics Instruction (Collaborative Research: Wilson)

This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

Award Number: 
2100903
Funding Period: 
Thu, 07/15/2021 to Mon, 06/30/2025
Full Description: 

Mathematics teaching and learning is influenced by policy and practice at the state, district, and school levels. To support large-scale change, it is important for high-quality mathematics instruction to be aligned and cohesive across each level of the education system. This can be supported through regional partnerships among state, district, and school-based leaders, mathematics teachers, education researchers, and mathematicians. Such partnerships create instructional tools and resources to document the vision for instruction. For example, teams can work together to create instructional frameworks for each grade band that describe standards, mathematics teaching, and units for teaching. This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

This project will develop a shared vision of high-quality mathematics instruction intended to improve systemic coherence during the implementation of education innovations. The project uses a research-practice partnership with a design-based implementation research design. To examine and support implementation of the vision, partners will continue a process of developing instructional frameworks, research and practice briefs, as well as additional resources as needed by stakeholders in the system. Engaging partners at all levels of the system is a central component of developing the shared vision of instruction. This project includes three major research questions. First, what are visions of high-quality mathematics instruction held by educators at different levels of a state educational system? Second, in what ways do educators' visions of high-quality mathematics instruction mediate their use of implementation resources in practice? Finally, in what ways do educators’ visions of high-quality mathematics instruction mediate their participation in the co-design of implementation resources? An activity theory framework is used to understand the interactions between partners at different levels in the system and the creation of artifacts during the design process. The research methods for the study are situated in design-based research to capture the conjectures, instructional resources, design processes, and outcomes of the process. The project will use case studies of partner districts, data gathering from interactions with partners, artifacts of the design process, and other documentation to understand how the vision is created and enacted in different settings and to develop an empirically supported design framework and methodology for implementing STEM innovations at scale that centralizes a shared instructional vision.

Co-Designing for Statewide Alignment of a Vision for High-Quality Mathematics Instruction (Collaborative Research: Mawhinney)

This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

Lead Organization(s): 
Award Number: 
2100833
Funding Period: 
Thu, 07/15/2021 to Mon, 06/30/2025
Full Description: 

Mathematics teaching and learning is influenced by policy and practice at the state, district, and school levels. To support large-scale change, it is important for high-quality mathematics instruction to be aligned and cohesive across each level of the education system. This can be supported through regional partnerships among state, district, and school-based leaders, mathematics teachers, education researchers, and mathematicians. Such partnerships create instructional tools and resources to document the vision for instruction. For example, teams can work together to create instructional frameworks for each grade band that describe standards, mathematics teaching, and units for teaching. This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

This project will develop a shared vision of high-quality mathematics instruction intended to improve systemic coherence during the implementation of education innovations. The project uses a research-practice partnership with a design-based implementation research design. To examine and support implementation of the vision, partners will continue a process of developing instructional frameworks, research and practice briefs, as well as additional resources as needed by stakeholders in the system. Engaging partners at all levels of the system is a central component of developing the shared vision of instruction. This project includes three major research questions. First, what are visions of high-quality mathematics instruction held by educators at different levels of a state educational system? Second, in what ways do educators' visions of high-quality mathematics instruction mediate their use of implementation resources in practice? Finally, in what ways do educators’ visions of high-quality mathematics instruction mediate their participation in the co-design of implementation resources? An activity theory framework is used to understand the interactions between partners at different levels in the system and the creation of artifacts during the design process. The research methods for the study are situated in design-based research to capture the conjectures, instructional resources, design processes, and outcomes of the process. The project will use case studies of partner districts, data gathering from interactions with partners, artifacts of the design process, and other documentation to understand how the vision is created and enacted in different settings and to develop an empirically supported design framework and methodology for implementing STEM innovations at scale that centralizes a shared instructional vision.

Co-Designing for Statewide Alignment of a Vision for High-Quality Mathematics Instruction (Collaborative Research: Schwartz)

This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

Lead Organization(s): 
Award Number: 
2100895
Funding Period: 
Thu, 07/15/2021 to Mon, 06/30/2025
Full Description: 

Mathematics teaching and learning is influenced by policy and practice at the state, district, and school levels. To support large-scale change, it is important for high-quality mathematics instruction to be aligned and cohesive across each level of the education system. This can be supported through regional partnerships among state, district, and school-based leaders, mathematics teachers, education researchers, and mathematicians. Such partnerships create instructional tools and resources to document the vision for instruction. For example, teams can work together to create instructional frameworks for each grade band that describe standards, mathematics teaching, and units for teaching. This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

This project will develop a shared vision of high-quality mathematics instruction intended to improve systemic coherence during the implementation of education innovations. The project uses a research-practice partnership with a design-based implementation research design. To examine and support implementation of the vision, partners will continue a process of developing instructional frameworks, research and practice briefs, as well as additional resources as needed by stakeholders in the system. Engaging partners at all levels of the system is a central component of developing the shared vision of instruction. This project includes three major research questions. First, what are visions of high-quality mathematics instruction held by educators at different levels of a state educational system? Second, in what ways do educators' visions of high-quality mathematics instruction mediate their use of implementation resources in practice? Finally, in what ways do educators’ visions of high-quality mathematics instruction mediate their participation in the co-design of implementation resources? An activity theory framework is used to understand the interactions between partners at different levels in the system and the creation of artifacts during the design process. The research methods for the study are situated in design-based research to capture the conjectures, instructional resources, design processes, and outcomes of the process. The project will use case studies of partner districts, data gathering from interactions with partners, artifacts of the design process, and other documentation to understand how the vision is created and enacted in different settings and to develop an empirically supported design framework and methodology for implementing STEM innovations at scale that centralizes a shared instructional vision.

Co-Designing for Statewide Alignment of a Vision for High-Quality Mathematics Instruction (Collaborative Research: McCulloch)

This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

Award Number: 
2100947
Funding Period: 
Thu, 07/15/2021 to Mon, 06/30/2025
Full Description: 

Mathematics teaching and learning is influenced by policy and practice at the state, district, and school levels. To support large-scale change, it is important for high-quality mathematics instruction to be aligned and cohesive across each level of the education system. This can be supported through regional partnerships among state, district, and school-based leaders, mathematics teachers, education researchers, and mathematicians. Such partnerships create instructional tools and resources to document the vision for instruction. For example, teams can work together to create instructional frameworks for each grade band that describe standards, mathematics teaching, and units for teaching. This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

This project will develop a shared vision of high-quality mathematics instruction intended to improve systemic coherence during the implementation of education innovations. The project uses a research-practice partnership with a design-based implementation research design. To examine and support implementation of the vision, partners will continue a process of developing instructional frameworks, research and practice briefs, as well as additional resources as needed by stakeholders in the system. Engaging partners at all levels of the system is a central component of developing the shared vision of instruction. This project includes three major research questions. First, what are visions of high-quality mathematics instruction held by educators at different levels of a state educational system? Second, in what ways do educators' visions of high-quality mathematics instruction mediate their use of implementation resources in practice? Finally, in what ways do educators’ visions of high-quality mathematics instruction mediate their participation in the co-design of implementation resources? An activity theory framework is used to understand the interactions between partners at different levels in the system and the creation of artifacts during the design process. The research methods for the study are situated in design-based research to capture the conjectures, instructional resources, design processes, and outcomes of the process. The project will use case studies of partner districts, data gathering from interactions with partners, artifacts of the design process, and other documentation to understand how the vision is created and enacted in different settings and to develop an empirically supported design framework and methodology for implementing STEM innovations at scale that centralizes a shared instructional vision.

Measuring the Effectiveness of Middle School STEM Innovation and Engineering Design Curricula

Researchers from Georgia Tech have developed a three-year middle school Engineering and Technology course sequence that introduces students to advanced manufacturing tools such as computer aided design (CAD) and 3D printing, incorporates engineering concepts such as pneumatics, robotics and aeronautics, increases student awareness of career paths, and addresses the concerns of technical employers wanting workers with problem solving, teamwork, and communication skills.

Award Number: 
2101441
Funding Period: 
Wed, 09/01/2021 to Sun, 08/31/2025
Full Description: 

Inclusion of engineering in the Next Generation Science Standards has led to increased opportunities for K-12 students to learn engineering related concepts and skills, and learn about engineering career paths. However, a persistent challenge is the lack of high-quality, research-based engineering curricular resources that align with science and math education standards. Further, the opportunities for K-12 students to also learn about manufacturing and how manufacturing is related to engineering, math, and science are limited. Researchers from Georgia Tech have developed a three-year middle school Engineering and Technology course sequence that introduces students to advanced manufacturing tools such as computer aided design (CAD) and 3D printing, incorporates engineering concepts such as pneumatics, robotics and aeronautics, increases student awareness of career paths, and addresses the concerns of technical employers wanting workers with problem solving, teamwork, and communication skills. This DRK-12 impact study project will investigate the effectiveness of STEM-Innovation and Design (STEM-ID) curricula in approximately 29 middle schools, targeting 29 engineering teachers and approximately 5,000 students across middle grades in Georgia. This impact research study will determine whether STEM-ID courses are equally effective across different demographic groups and school environments under normal implementation conditions and whether the courses have the potential to positively impact a vast number of students around the country, particularly students who have struggled to stay engaged with their STEM education. It is a critical part of a larger effort to move the STEM-ID curricula, developed with NSF support, from the research lab to large-scale practice in schools.

To facilitate large-scale implementation, the project will transfer all curriculum and teacher support materials to an online dissemination site, develop just-in-time teacher support materials to embed within the curriculum, create an online professional development platform, and conduct professional learning in multiple areas of the state. The project team will then assess the transferability of the STEM-ID curricula and identify teacher outcomes that affect the implementation. They will also examine the generalizability of the curriculum by measuring student outcomes in STEM academic achievement and on social-emotional scales. The project’s research questions consider 1) contextual factors that influence scaling; 2) the fidelity of implementation, curriculum adaptations and sustainability; 3) the effects of professional development on teachers’ engineering self-efficacy and instructional practices; 4) the effect of participation on student academic performance in mathematics and science; 5) the effect of participation on student social-emotional outcomes; and 5) the relationship between the way STEM-ID is implemented and the student outcomes.  To examine the effects of STEM-ID on achievement and achievement growth, the investigators will use a multilevel growth model and mediation analysis to explore if the intervention’s effect on achievement was mediated by students’ engagement, academic self-efficacy, and/or interest in STEM. Additionally, drawing upon Century and Cassata’s Fidelity of Implementation framework (FOI), they will examine the array of factors that influence implementation of the STEM-ID curricula across diverse school settings.

Building Insights through Observation: Researching Arts-based Methods for Teaching and Learning with Data

This project will use visualizations from an easily accessible tool from NOAA, Science On a Sphere, to help students develop critical thinking skills and practices required to effectively make meaning from authentic scientific data. The project will use arts-based pedagogies for observing, analyzing, and critiquing visual features of data visualizations to build an understanding of what the data reveal. The project will work with middle school science teachers to develop tools for STEM educators to use these data visualizations effectively.

Lead Organization(s): 
Award Number: 
2101310
Funding Period: 
Thu, 07/01/2021 to Mon, 06/30/2025
Full Description: 

Innovations in data collection, infrastructure, and visualization play an important role in modern society. Large, complex datasets are accessible to and shared widely with the public. However, students need to learn how to interpret and reason about visualizations of scientific data. This project will use visualizations from an easily accessible tool from NOAA, Science On a Sphere, to help students develop critical thinking skills and practices required to effectively make meaning from authentic scientific data. The project will use arts-based pedagogies for observing, analyzing, and critiquing visual features of data visualizations to build an understanding of what the data reveal. The project will work with middle school science teachers to develop tools for STEM educators to use these data visualizations effectively. This project focuses on visual thinking skills that have been found to apply in both science and art: describing, wondering, recognizing uncertainty, and interpreting with evidence.

The project will conduct foundational research to understand the ways in which arts-based instructional methods and geospatial data visualization can be successfully applied by science teachers. The research will examine: (1) the ways in which arts-based instructional methods can be successfully applied by STEM teachers; (2) critical elements in the process of learning and applying these techniques to influence teachers’ content, pedagogical, and technological knowledge; and (3) for which transferable data literacy skills these approaches show most promise with children. This project will use a design-based research framework to develop data literacy teaching approaches in partnership with middle school teachers. The research process will include data about teachers’ development and students’ learning about data literacy. Data to be collected include qualitative and quantitative information from teachers and students.

Boosting Data Science Teaching and Learning in STEM

This project addresses a critical need to help middle school teachers learn to incorporate data science in their teaching. It uses an open-source platform called the Common Online Data Analysis Platform (CODAP) as a tool for teachers to learn about data science and develop resources for students’ learning. The project team will develop a framework for teachers’ knowledge of data science teaching and learning. Insights from the project will help develop effective practices for teaching data science and understanding how students learn data science.

Lead Organization(s): 
Award Number: 
2101049
Funding Period: 
Thu, 07/01/2021 to Mon, 06/30/2025
Full Description: 

Data fluency is the ability to navigate the world of data. This includes understanding the sources of data, structuring data for analysis, interpreting representations of data, inferring meaning from data, and explaining data and findings to diverse audiences. Data science is becoming more important as a career opportunity and a mechanism for addressing complex phenomena in STEM disciplines. This project addresses a critical need to help middle school teachers learn to incorporate data science in their teaching. It uses an open-source platform called the Common Online Data Analysis Platform (CODAP) as a tool for teachers to learn about data science and develop resources for students’ learning. We will develop a framework for teachers’ knowledge of data science teaching and learning. Insights from the project will help develop effective practices for teaching data science and understanding how students learn data science.

This project will result in two key products: a framework for teacher data fluency and a set of resources for teacher professional learning in data science, including cases of classroom practice that illustrate teaching and learning progressions in data science and surface common student roadblocks, materials for site-based Professional Learning Communities, and professional learning modules that engage teachers in the kind of data-rich learning called for by science education standards and STEM education more broadly. The project will include two stages. During stage one, the project will use a design-based research approach to develop a model of pedagogical content knowledge for data fluency in middle school. Stage one will answer the following questions: (1a) What do teachers need to know and be able to do to support students in becoming data fluent? (1b) What are common student misconceptions and roadblocks in students’ progress to data fluency? (1c) What are the core components of professional learning that boost teachers’ data fluency and their ability to support students becoming data fluent? During stage two, the project will use a mixed methods approach to study the model’s implementation. Stage two will address the following questions: (2a) What impact does professional learning with the core components identified in stage one have on the opportunities to learn teachers provide to their students and on their students’ data fluency? (2b) Are the professional learning innovations usable and feasible for the end users? (2c) In what ways do teachers’ and students’ classroom interactions reflect the model of pedagogical content knowledge developed in stage one? What evidence supports or refutes the hypothesis about the knowledge and skills teachers need to support students’ movement to data fluency?

Precipitating Change in Alaskan and Hawaiian Schools: Modeling Mitigation of Coastal Erosion

This project will engage middle school students in place-based coastal erosion investigations that interweave Indigenous knowledge and Western STEM perspectives. Indigenous perspectives will emphasize learning from place and community; Western STEM perspectives will focus on systems and computational thinking.

Lead Organization(s): 
Award Number: 
2101198
Funding Period: 
Thu, 07/01/2021 to Sun, 06/30/2024
Full Description: 

Alaska and Hawaii face similar challenges with threats caused by coastal erosion. This project will engage middle school students in place-based coastal erosion investigations that interweave Indigenous knowledge and Western STEM perspectives. Indigenous perspectives will emphasize learning from place and community. Western STEM perspectives will focus on systems and computational thinking. The project will design and implement a series of classroom investigations using universal design for learning (UDL) principles, creating a glossary, translations for Indigenous languages, and ways to assist students in understanding of Indigenous and Western science terms. The coastal erosion content will be collaboratively piloted, refined, and implemented with middle school teachers and students in Alaska and Hawaii. Project research will build on and refine a learning progression framework that describes how students develop an understanding of coastal erosion that occurs over time. Research will also examine how students make sense of and develop increasingly complex and integrated knowledge and practice in Earth science and computational thinking. Areas of knowledge and practice will include explaining and predicting events and processes in systems and developing solutions to problems. The project’s curriculum and findings will be widely disseminated to researchers and the broader body of Alaskan and Hawaiian schools and teachers, as well as the Indigenous education and science education communities, to share understanding about the project’s model and lessons.

The project will position middle school students in a culturally congruent epistemological stance (student-as-anthropologist), allowing them to build Earth science learning from both Indigenous knowledge as well as Western-style inquiry and promote their ability to apply integrated Earth science, mathematics, and computational thinking skills in the context of coastal erosion. The project will recruit 20 teachers, and the intervention is expected to be integrated into approximately 24 classrooms. Project research and evaluation will investigate how the culturally congruent and scientifically and technologically ambitious instruction prepares students to bring multiple perspectives, including Indigenous and Western science, to study and address socioscientific issues. This project will adopt a design-based implementation research approach to answer three main research questions. The research questions are: 1) What are different ways students make sense of coastal erosion? How do students’ ways of making sense reflect personal and cultural (including Indigenous) funds of knowledge and Western STEM perspectives reflective of Next Generation Science Standards-aligned three-dimensional science knowledge and practice? 2) How do culturally congruent, multi-perspective learning experiences that value both students’ home culture and Western science perspectives relate to changes in students’ science knowledge and practices integrating coastal erosion and computational thinking? 3) How do multi-perspective learning experiences influence the approaches to learning students describe when they encounter a new socioscientific issue?   Data will be analyzed using a mixed methods approach.

Teacher Collaborative for Culturally Relevant Mathematics and Science Curricula

Culturally relevant pedagogy (CRP) is a framework that puts students and their experiences at the center of teaching. Culturally relevant math and science teaching (CRMST), more specifically, describes equitable science and math teaching practices that support student success in schools. This project involves elementary teachers in a 3-day conference focusing on CRP and CRMST. The conference is designed to form a teacher collaborative to share experiences and resources, learn from one another, and create their own culturally relevant science and math units for use in their classrooms.

Lead Organization(s): 
Award Number: 
2101532
Funding Period: 
Tue, 06/15/2021 to Tue, 05/31/2022
Full Description: 

To be effective, teachers need a strong theoretical understanding of the frameworks that support success for all students, especially those students historically underserved by schools. Culturally relevant pedagogy (CRP) is a framework that puts students and their experiences at the center of teaching. Culturally relevant math and science teaching (CRMST), more specifically, describes equitable science and math teaching practices that support student success in schools. This project involves elementary teachers in a 3-day conference focusing on CRP and CRMST. The conference is designed to form a teacher collaborative to share experiences and resources, learn from one another, and create their own culturally relevant science and math units for use in their classrooms. To boost teacher learning, the conference includes a variety of workshops and activities led by local and national content area experts, teacher educators, and STEM teacher-leaders who use culturally relevant science/math curricula in their classrooms. In the year following the conference, teachers will be strategically supported to continue designing and implementing CRMST through monthly teacher collaborative meetings and in-classroom support. At the end of the project year, teachers will participate in a public curriculum fair that showcases their projects and allows them to share what they have learned.

The research component of this project will use culturally relevant pedagogy and a framework that describes trajectories of development for CRMST as theoretical and analytical frameworks. In particular, the latter framework describes levels of engagement with key ideas from CRP and attends to, for example, whether teachers engage with transformative decision making, grapple with issues from an individual or structural perspective, and recognize tensions and discomfort in their learnings about CRMST. The research will focus on learning more about how teachers benefit from collaborative opportunities and how they develop understandings about CRMST.  Data sources will include: culturally relevant mathematics and science curricula (CR-MASC) units, classroom observations, field notes, and surveys collected from the teacher participants. Findings about practices and structures that support teachers’ movement towards CRMST, as well as exemplary CR-MASC units, will contribute to research and practice in teacher education aimed at improving science and math learning experiences for marginalized learners.

Facilitating Formative Feedback: Using Simulations to Impact the Capability of Novice Mathematics Teachers

This project explores the ways in which thoughtfully designed simulations can provide preservice teachers with formative assessment opportunities that serve as a complement to, or alternative to as needed, feedback derived from field placement contexts. A set of simulations will be designed with a focus on eliciting and interpreting student thinking. These simulations will be used with preservice teachers in three elementary teacher preparation programs of varying size and demographics.

Lead Organization(s): 
Award Number: 
2101343
Funding Period: 
Wed, 09/01/2021 to Sun, 08/31/2025
Full Description: 

During their initial teacher preparation experiences, preservice teachers need meaningful formative assessment that can support them in developing their skills and practices as new teachers of mathematics. While field placements offer some such opportunities, too often preservice teachers are not able to see, experience, and enact a full range of research-based effective mathematics teaching practices. This level II four-year design and development study in the assessment strand explores the ways in which thoughtfully designed simulations can provide preservice teachers with formative assessment opportunities that serve as a complement to, or alternative to as needed, feedback derived from field placement contexts. A set of simulations will be designed with a focus on eliciting and interpreting student thinking. These simulations will be used with preservice teachers in three elementary teacher preparation programs of varying size and demographics. Data will be collected to understand the ways in which the feedback from engaging in the simulations serves to strengthen preservice teachers' abilities to elicit and interpret student thinking through an analysis of performance in the simulations, interviews with preservice teachers, and feedback from teacher educators. An associated study will establish the reliability and validity of the simulations as assessment tools.

Simulations will be developed and tested in three cycles, with iterative improvements made between each cycle. The first cycle will involve 10 preservice teachers in a pilot study separate from participation in a course, in which preservice teachers engage in a simulation, receive formative feedback, and engage in a second similar simulation. This cycle will evaluate the extent to which feedback appears to influence subsequent performance. In the second cycle, the project will work with three teacher educators in diverse contexts to enact the simulations with all preservice teachers in one section of their elementary mathematics methods courses. In the final cycle, the use of the simulations will shift from a research team actor playing the role of the student to a site-based actor recruited by the teacher educators at each of the three institutions. To validate the tools, researcher reliability and teacher educator reliability studies will be conducted to asses the extent to which the four different simulation assessments provide consistent feedback on the targeted teaching practices and the extent to which the scoring of the assessments are reliable. A G study (generalizability study) will be conducted to evaluate the extent to which the teacher participant is the primary source of variation as compared to variations from student actors or the rater administering the assessment. Results will be disseminated in a variety of mathematics education settings and the simulation materials will be made available to practitioners and adapted for additional use in  mixed-reality simulation platforms.

Pages

Subscribe to Curricula/Activities