Cognitive Science

Building an Understanding of Science

Understanding Science provides an accurate portrayal of the nature of science and tools for teaching associated concepts. This project has at its heart a public re-engagement with science that begins with teacher preparation. To this end, its immediate goals are (1) improve teacher understanding of the nature of the scientific enterprise and (2) provide resources and strategies that encourage and enable K-16 teachers to incorporate and reinforce the nature of science throughout their science teaching.

Award Number: 
0624436
Funding Period: 
Mon, 03/12/2007 to Wed, 05/11/2011
Project Evaluator: 
BSCS

Professional Development Materials to Develop Student Knowledge and Skills of Scientific Argumentation

This project is producing prototype professional development materials to enhance the capacity of middle school teachers to increase students' science knowledge and argumentation skills. The project is also investigating the level of teacher implementation of the professional development materials and documenting the development of scientific argumentation skills of the students. Research data on cognitive strategy, instructional procedures, cooperative discussion, writing protocols and the effectiveness of the professional development support material will be collected.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
0554414
Funding Period: 
Thu, 06/01/2006 to Mon, 05/31/2010

The Development of Student Cohorts for the Enhancement of Mathematical Literacy in Under Served Populations

This project is developing and conducting research on the Cohort Model for addressing the mathematics education of students that perform in the bottom quartile on state and district tests. The predicted outcome is that most students will remain in the cohort for all four years and that almost all of those who do will perform well enough on college entrance exams to be admitted and will test out of remedial mathematics courses.

Lead Organization(s): 
Award Number: 
0822175
Funding Period: 
Mon, 09/01/2008 to Wed, 08/31/2011
Project Evaluator: 
Inverness Research, Inc.
Full Description: 

Project Summary

This is a Full Research and Development proposal which addresses the Contextual Challenge: How can the learning of significant STEM content be achieved to ensure public literacy and workforce readiness?  Our nation is failing to prepare millions of youth for meaningful and productive participation in an information-based society. The target population are those students performing in the bottom quartile on state and national tests, many of these are children of color living in under resourced communities, and most of these young people do not finish high school and end up diverted into an underground economy, gangs, and prisons.   

This project addresses this failure by further developing and testing an approach that the Algebra Project is developing for high school mathematics, in which students form a cohort that stays together for all four years of high school, study mathematics every day using project-designed curricular materials with teachers who participate in project professional development, and are supported by local community groups. 

The Algebra Project seeks to stimulate a demand for math literacy in those most affected by its absence -- the young people themselves.  It stresses the importance of peer culture, using lessons learned from experiences in the 1960s Civil Rights Movement, as well as in the emergence of project graduates into a group with their own perspectives and initiatives. 

In the 60s, project founders learned how to use the meeting place as a tool to engage and empower the people that the meeting was intended to serve.  In the proposed project, there are two meeting places: the students’ high school mathematics classroom and supplementary education activities; and the network of sites around the country that are communicating and learning how to develop and implement cohorts. Young peoples’ roles in each of these settings are key to creating the motivation and commitment needed for student success as well as developing local interest.  The combination of classroom and professional development work, innovative curriculum materials, and community involvement creates an intervention that can significantly transform the peer culture, even in the face of negative forces.

The Algebra Project has developed a cohort model that we predict will stimulate and enable students to pass the state and district mandated tests in mathematics, to pass the mathematics portions of any graduation test, and to score well enough on the SAT or ACT to enter college, and to place into mathematics courses for college credit (not remedial courses).  Building on previous awards, the project will continue to research and develop the cohort model, and will create a small network of cohorts to establish that our model can be widely successful.

Intellectual merit:  This project will demonstrate how students entering high school performing in the bottom quartile nationally and state-wide can be prepared for college-level mathematics, using lessons learned from many years of past experience working in such communities and in their middle schools, and more recently in their high schools and in collaboration with university mathematicians.  The research results are critical to the nation’s learning how to improve mathematics achievement for all children – to gaining a sense of what such a program “looks and feels like”, and what resources and commitments are required, from which institutions. 

Broader impact:  The results of this discovery research project will advance understanding of how to improve mathematics learning and achievement in low performing districts, so students are prepared to take college mathematics without repeating high school mathematics in early college.  It will also demonstrate the resources and commitments needed to reach this result.

Video Interactions for Teaching and Learning (VITAL): A Learning Environment for Courses in Early Childhood Mathematics Education

This project enhances and expands video-based instruction to help prospective and practicing teachers analyze the development of children's mathematical thinking. It trains teachers to: (a) understand from a cognitive developmental psychology perspective how children learn and think about mathematics; (b) assess children's mathematical knowledge and plan instructional activities accordingly; (c) develop an evidence-based understanding of effective and developmentally appropriate teaching methods and curricula; and (d) develop a basic understanding of key mathematical concepts.

Lead Organization(s): 
Award Number: 
0353402
Funding Period: 
Tue, 06/01/2004 to Mon, 11/30/2009

Learning to RECAST Students' Causal Assumptions in Science Through Interactive Multimedia Professional Development Tools

This project produced and is testing a website with tools to help teachers identify when students’ science learning may be limited by how they construe the underlying causal structure of the concepts. It demonstrates students’ difficulties and a pedagogical approach to help them recast their explanations to align them with the causal structure in the scientifically accepted explanations. The site focuses on middle school with in-depth examples in density and ecosystems.

Lead Organization(s): 
Award Number: 
0455664
Funding Period: 
Fri, 07/01/2005 to Sat, 04/30/2011
Project Evaluator: 
EDC
Full Description: 

Understanding the nature of causality is critical to learning a range of science concepts from “everyday science” to the science of complexity. The Understandings of Consequence (UC) Project, funded by NSF, established that students hold default assumptions about the nature of causality that hinder their science learning and that curriculum designed to restructure students’ causal assumptions while learning the science leads to deeper understanding. In this project, the UC team and the Science Media Group (SMG) of the Harvard-Smithsonian Center for Astrophysics collaborated in a five-year iterative design process to create interactive, multimedia professional development website. It has tools to guide middle school physics and biology teachers in assessing the structure of their students’ scientific explanations and in using existing curricula and developing their own curriculum to restructure or RECAST students’ understandings to fit with scientifically accepted explanations. It includes a range of formats including: documentary footage of real-life classrooms; interviews with teachers describing challenges and obstacles they faced introducing the curricula, how these were overcome, and, the benefits they obtained from using the materials; comments by students, which demonstrate the wide range of student prior thinking about specific causal forms as embedded in the science concepts; discussion questions, suggested hands-on activities, and short videotaped “content explorations,” examples of student written work and journals; design guides and questions to help teachers understand the features of and how to design RECAST activities, assessments, and assessment rubrics related to causal understanding in science. We are evaluating the site with 60 teachers and are iteratively improving it.

Pages

Subscribe to Cognitive Science