Technology

Understanding the Role of Simulations in K-12 Science and Mathematics Teacher Education

This project will develop and implement a working conference for scholars and practitioners to articulate current use cases and theories of action regarding the use of simulations in PreK-12 science and mathematics teacher education. The conference will be structured to provide opportunities for attendees to share their current research, theoretical models, conceptual views, and use cases focused on the design and use of digital and non-digital simulations for building and assessing K-12 science and mathematics teacher competencies.

Lead Organization(s): 
Award Number: 
1813476
Funding Period: 
Sat, 09/01/2018 to Sat, 08/31/2019
Full Description: 

The recent emergence of updated learning standards in science and mathematics, coupled with increasingly diverse school students across the nation, has highlighted the importance of updating professional learning opportunities for science and mathematics teachers. One promising approach that has emerged is the use of simulations to engage teachers in approximations of practice where the focus is on helping them learn how to engage in ambitious content teaching. In particular, recent technological advances have supported the emergence of new kinds of digital simulations and have brought increased attention to simulations as a tool to enhance teacher learning. This project will develop and implement a working conference for scholars and practitioners to articulate current use cases and theories of action regarding the use of simulations in PreK-12 science and mathematics teacher education. The conference will be structured to provide opportunities for attendees to share their current research, theoretical models, conceptual views, and use cases focused on the design and use of digital and non-digital simulations for building and assessing K-12 science and mathematics teacher competencies.

While the use of simulations in teacher education is neither new nor limited to digital simulation, emerging technological capabilities have enabled digital simulations to become practical in ways not formerly available. The current literature base, however, is dated and the field lacks clear theoretic models or articulated theories of action regarding what teachers could or should learn via simulations, and the essential components of effective learning trajectories. This working conference will be structured to provide opportunities for attending, teacher educators, researchers, professional development facilitators, policy makers, preservice and inservice teachers, and school district leaders to share their current research, theoretical models, conceptual views, and use cases regarding the role of simulations in K-12 science and mathematics teacher education. The conference will be organized around four major goals, including: (1) Define how simulations (digital and non-digital) are conceptualized, operationalized, and utilized in K-12 science and mathematics teacher education; (2) Document and determine the challenges and affordances of the varied contexts, audiences, and purposes for which simulations are used in K-12 science and mathematics teacher education and the variety of investigation methods and research questions employed to investigate the use of simulations in these settings; (3) Make explicit the theories of action and conceptual views undergirding the various simulation models being used in K-12 science and mathematics teacher education; and (4) Determine implications of the current research and development work in this space and establish an agenda for studying the use of simulations in K-12 science and mathematics teacher education. The project will produce a white paper that presents the research and development agenda developed by the working conference, describes a series of use cases describing current and emergent practice, and identifies promising directions for future research and development in this area. Conference outcomes are expected to advance understanding of the varied ways in which digital and non-digital simulations can be used to foster and assess K-12 science and mathematics teacher competencies and initiate a research and development agenda for examining the role of simulations in K-12 science and mathematics teacher education.


Project Videos

2019 STEM for All Video Showcase

Title: Understanding the Role of Simulations in Teacher Preparation

Presenter(s): Lisa Dieker, Angelica Fulchini Scruggs, Heather Howell, Michael Hynes, & Jamie Mikeska


Design and Development of Transmedia Narrative-based Curricula to Engage Children in Scientific Thinking and Engineering Design (Collaborative Research: Ellis)

This project will address the need for engineering resources by applying an innovative pedagogy called Imaginative Education (IE) to create middle school engineering curricula. In IE, developmentally appropriate narratives are used to design learning environments that help learners engage with content and organize their knowledge productively. This project will combine IE with transmedia storytelling.

Lead Organization(s): 
Award Number: 
1814033
Funding Period: 
Sun, 07/15/2018 to Thu, 06/30/2022
Full Description: 

Engineering is an important component of the Next Generation Science Standards (NGSS). However, resources for supporting teachers in implementing these standards are scarce. This project will address the need for resources by applying an innovative pedagogy called Imaginative Education (IE) to create middle school engineering curricula. In IE, developmentally appropriate narratives are used to design learning environments that help learners engage with content and organize their knowledge productively. To fully exploit the potential of this pedagogy, this project will combine IE with transmedia storytelling. In transmedia storytelling, different elements of a narrative are spread across a variety of formats (such as books, websites, new articles, videos and other media) in a way that creates a coordinated experience for the user. Once created, the curricula will be implemented in classrooms to research its impact on (1) increasing learners' capacities to engage in both innovative and direct application of engineering concepts, and (2) improving learners' science, technology, engineering, and mathematics (STEM) identity. 

This research will be led by Smith College and Springfield Technical Community College in collaboration with Springfield (MA) Public Schools (SPS). Additional expertise in evaluating the findings will be provided by the Collaborative for Educational Services and an external advisory board of leaders in STEM education and transmedia storytelling. The project will result in the development of a transmedia learning environment that includes two NGSS-aligned, interdisciplinary engineering units and seven lessons that integrate science and engineering. The research study will be implemented in four phases in eight SPS middle schools. Approximately 900 students will participate each year. In Phase 1, the project team will collaborate with SPS teachers to create engineering units, lessons, and standards-based achievement measures. In Phase 2, teachers in the treatment group will participate in professional development (PD) workshops covering IE, transmedia learning environments, structure of the curriculum, and connections to NGSS. In Phase 3 the curricula will be implemented in treatment classrooms and both treatment and control group students will be assessed. In Phase 4, testing and assessment will continue in SPS schools and will be expanded to rural and suburban classrooms. Teachers in these classrooms will use online multimedia PD that will ensure scalability and mirrors the structure and content of in-person PD. Data analysis will provide evidence of whether this imaginative and transmedia educational approach improves students' capacities for using engineering concepts and enhances their STEM identity.


Project Videos

2019 STEM for All Video Showcase

Title: Transforming Engineering Education for Middle School (TEEMS)

Presenter(s): Beth McGinnis-Cavanaugh, Sonia Ellis, & Crystal Ford


Design and Development of Transmedia Narrative-based Curricula to Engage Children in Scientific Thinking and Engineering Design (Collaborative Research: McGinnis-Cavanaugh)

This project will address the need for engineering resources by applying an innovative pedagogy called Imaginative Education (IE) to create middle school engineering curricula. In IE, developmentally appropriate narratives are used to design learning environments that help learners engage with content and organize their knowledge productively. This project will combine IE with transmedia storytelling.

Partner Organization(s): 
Award Number: 
1813572
Funding Period: 
Sun, 07/15/2018 to Thu, 06/30/2022
Project Evaluator: 
Collaborative for Educational Services (CES)
Full Description: 

Engineering is an important component of the Next Generation Science Standards (NGSS). However, resources for supporting teachers in implementing these standards are scarce. This project will address the need for resources by applying an innovative pedagogy called Imaginative Education (IE) to create middle school engineering curricula. In IE, developmentally appropriate narratives are used to design learning environments that help learners engage with content and organize their knowledge productively. To fully exploit the potential of this pedagogy, this project will combine IE with transmedia storytelling. In transmedia storytelling, different elements of a narrative are spread across a variety of formats (such as books, websites, new articles, videos and other media) in a way that creates a coordinated experience for the user. Once created, the curricula will be implemented in classrooms to research its impact on (1) increasing learners' capacities to engage in both innovative and direct application of engineering concepts, and (2) improving learners' science, technology, engineering, and mathematics (STEM) identity. 

This research will be led by Smith College and Springfield Technical Community College in collaboration with Springfield (MA) Public Schools (SPS). Additional expertise in evaluating the findings will be provided by the Collaborative for Educational Services and an external advisory board of leaders in STEM education and transmedia storytelling. The project will result in the development of a transmedia learning environment that includes two NGSS-aligned, interdisciplinary engineering units and seven lessons that integrate science and engineering. The research study will be implemented in four phases in eight SPS middle schools. Approximately 900 students will participate each year. In Phase 1, the project team will collaborate with SPS teachers to create engineering units, lessons, and standards-based achievement measures. In Phase 2, teachers in the treatment group will participate in professional development (PD) workshops covering IE, transmedia learning environments, structure of the curriculum, and connections to NGSS. In Phase 3 the curricula will be implemented in treatment classrooms and both treatment and control group students will be assessed. In Phase 4, testing and assessment will continue in SPS schools and will be expanded to rural and suburban classrooms. Teachers in these classrooms will use online multimedia PD that will ensure scalability and mirrors the structure and content of in-person PD. Data analysis will provide evidence of whether this imaginative and transmedia educational approach improves students' capacities for using engineering concepts and enhances their STEM identity.


Project Videos

2019 STEM for All Video Showcase

Title: Transforming Engineering Education for Middle School (TEEMS)

Presenter(s): Beth McGinnis-Cavanaugh, Sonia Ellis, & Crystal Ford


Project MAPLE: Makerspaces Promoting Learning and Engagement

The project plans to develop and study a series of metacognitive strategies that support learning and engagement for struggling middle school students during makerspace experiences. The study will focus narrowly on establishing a foundational understanding of how to ameliorate barriers to engaging in design learning through the use of metacognitive strategies.

Award Number: 
1721236
Funding Period: 
Fri, 09/01/2017 to Sat, 08/31/2019
Full Description: 

The project plans to develop and study a series of metacognitive strategies that support learning and engagement for struggling middle school students during makerspace experiences. The makerspace movement has gained recognition and momentum, which has resulted in many schools integrating makerspace technologies and related curricular practices into the classroom. The study will focus narrowly on establishing a foundational understanding of how to ameliorate barriers to engaging in design learning through the use of metacognitive strategies. The project plans to translate and apply research on the use of metacognitive strategies in supporting struggling learners to develop approaches that teachers can implement to increase opportunities for students who are the most difficult to reach academically. Project strategies, curricula, and other resources will be disseminated through existing outreach websites, research briefs, peer-reviewed publications for researchers and practitioners, and a webinar for those interested in middle-school makerspaces for diverse learners.

The research will address the paucity of studies to inform practitioners about what pedagogical supports help struggling learners engage in these makerspace experiences. The project will focus on two populations of struggling learners in middle schools, students with learning disabilities, and students at risk for academic failure. The rationale for focusing on metacognition within makerspace activities comes from the literature on students with learning disabilities and other struggling learners that suggests that they have difficulty with metacognitive thinking. Multiple instruments will be used to measure metacognitive processes found to be pertinent within the research process. The project will tentatively focus on persistence (attitudes about making), iteration (productive struggle) and intentionality (plan with incremental steps). The work will result in an evidence base around new instructional practices for middle school students who are struggling learners so that they can experience more success during maker learning experiences.

BioGraph 2.0: Online Professional Development for High School Biology Teachers for Teaching and Learning About Complex Systems

This proposal will develop and test an open-access, online system of professional development for high school biology teachers in order to build pedagogical competencies for teaching about complex systems and to support the application of those competencies in high school biology classrooms.

Lead Organization(s): 
Award Number: 
1721003
Funding Period: 
Fri, 09/01/2017 to Sat, 08/31/2019
Full Description: 

This proposal will develop and test an open-access, online system of professional development for high school biology teachers in order to build pedagogical competencies for teaching about complex systems and to support the application of those competencies in high school biology classrooms. The online teacher professional development (PD) will be delivered through the edX open access platform.

This research project will include two cycles of design and development of the professional development experience. It will include mixed methods and a longitudinal examination of teacher and student learning fostered by professional development. The research for the first phase will be qualitative in nature and will result in a series of case studies that highlight different facets of the interactions that influence teachers' learning. Following this qualitative phase, through a field study that employs multivariate analysis of covariance and hierarchical linear models analytical techniques, the effectiveness of the design and development stages will be compared to an alternative professional development experience that is similar to the project's professional development but does not include collaborative design. The broad aim is to develop and test an open-access, online system of professional development (PD) that includes solutions for known challenges in teacher online PD. The project builds on a prior NSF-funded exploratory project. The project will employ a randomized control trial to assess the effectiveness of PD on improving teacher content knowledge and skills, changes in classroom practices and instruction, curriculum engagement by students and student achievement outcomes with an end goal to understand better what facilitates online PD and to create a low cost scalable and online version of the original NSF-funded BioGraph. This research will produce insights and guidelines that can immediately be incorporated into the emerging field of online professional development, and online education in general. The content goals are to build pedagogical competencies for teaching about complex systems and to support the application of those competencies in high school biology classrooms.

Science and Engineering Education for Infrastructure Transformation

This project focuses on the research and develop an engineering education technology and pedagogy that will support project-based learning of science, engineering, and computation concepts and skills underlying the strategically important "smart" and "green" aspects of the infrastructure. The project will develop transformative technologies and curriculum materials to turn the campus of a high school or a geographical information system such as Google Maps into an engineering laboratory with virtually unlimited opportunities for learning and exploration.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1721054
Funding Period: 
Sun, 10/01/2017 to Thu, 09/30/2021
Full Description: 

The Concord Consortium in collaboration with Purdue University will research and develop an engineering education technology and pedagogy that will support project-based learning of science, engineering, and computation concepts and skills underlying the strategically important "smart" and "green" aspects of the infrastructure. This project will develop transformative technologies and curriculum materials to turn the campus of a high school or a geographical information system such as Google Maps into an engineering laboratory with virtually unlimited opportunities for learning and exploration. The project will deliver two innovations: 1) The Smart High School is an engineering platform for designing Internet of Things systems for managing the resources, space, and processes of a school based on real-time analysis of data collected by various sensors deployed by students on campus; and 2) the Virtual Solar World is a computational modeling platform for students to design, deploy, and connect virtual solar power solutions for their homes, schools, and regions. Six standards-aligned curriculum units based on these technologies will be developed to guide student learning and support educational research. Approximately 2,000 students from rural, suburban, and urban high schools in Indiana, Massachusetts, New Hampshire, and Ohio will participate in this research. project products and findings through the Internet, conferences, publications, and partner networks.

The research is designed to identify technology-enhanced instructional strategies that can simultaneously foster the growth of skills and self-efficacy in scientific reasoning, design thinking, and computational thinking, all of which are needed to build the future infrastructure. The focus on infrastructure transformation is aligned with NSF's vision of smart and connected communities. Although this project will use the context of smart and green infrastructure to engage students to solve real-world problems, the skills of scientific reasoning, design thinking, and computational thinking that they will acquire through meeting the challenges of this project can be transferrable to other topics and fields. Using a design-based research approach, a rich set of formative and summative data will be collected from these students for probing into three research questions: 1) To what extent does the integrated learning model help students develop and connect scientific reasoning, design thinking, and computational thinking skills?; 2) To what extent is students' interest in cognate careers affected by the authenticity of engineering design challenges?; and 3) How do the variations in the solutions to overcome the cognitive and practical difficulties of real-world problems impact learning outcomes and career interest? The data sources include pre/post-tests, process data, self-reports, observations, surveys, interviews, and participant information.

Culturally Responsive Indigenous Science: Connecting Land, Language, and Culture

This Culturally Responsive Indigenous Science project seeks to advance this knowledge base through research and by catalyzing new approaches to Indigenous science, technology, engineering, and mathematics (ISTEM) learning. Using an ISTEM focused model, the project will develop, test, and implement a culturally responsive land-based curriculum that integrates Western science, multimodal technologies and digital tools, and Native American tribal knowledge, cultures and languages to investigate and address local environmental science and sustainability concerns.

Lead Organization(s): 
Award Number: 
1720931
Funding Period: 
Fri, 09/01/2017 to Tue, 08/31/2021
Full Description: 

The intersection between Indigenous and Western science continues to be of great importance to K-12 science education, particularly with regards to broadening participation in STEM. With over five hundred federally recognized Native American tribes in the United States, there is much to learn and understand. This Culturally Responsive Indigenous Science project seeks to advance this knowledge base through research and by catalyzing new approaches to Indigenous science, technology, engineering, and mathematics (ISTEM) learning. Using an ISTEM focused model, the project will develop, test, and implement a culturally responsive land-based curriculum that integrates Western science, multimodal technologies and digital tools, and Native American tribal knowledge, cultures and languages to investigate and address local environmental science and sustainability concerns. While Indigenous STEM teaching and learning as constructs have existed for many years, the rigorous research design and extensive integration of multimodal technologies as platforms for scientific inquiry, data management, knowledge dissemination and curation are innovative and timely. Few, if any, Design and Development projects in the current DRK-12 portfolio explore similar work. Therefore, the broader impacts of this project are poised to not only contribute to the DRK-12 portfolio but also advance knowledge in Indigenous STEM education and science education, more broadly.

Over a three year period, hundreds of Native American students (grades 4-9) in tribal schools located in Oregon, Washington, and Idaho will engage in the project. Each year, approximately 60-80 students (grades 7-9), with some returning students, will also participate in enrichment activities and in years 1-3, in the residential summer experience at Washington State University. A qualitative, quasi-experimental design-based study will be conducted to address three salient research questions: (a) What are the impacts of culturally responsive and land education-based ISTEM curriculum and technology on Native American student engagement, efficacy and achievement in school? (b) What types of professional development activities foster teacher efficacy and improve teacher learning and teaching of ISTEM in classrooms? and (c) How can ISTEM foster greater family and community engagement in schools and in Tribal Communities? Data will be collected through interviews, surveys, and or questionnaires from participating students, teachers, and Tribal members. Consistent with Indigenous methodologies, focus group interviews (talking circles) will also be facilitated after ISTEM community expositions and engagement activities to capture community impacts. Formative and summative evaluations will be conducted by the Learning and Performance Research Center (LPRC) at Washington State University, an independent entity of the University with extensive expertise in project evaluation. A broad range of dissemination activities will be employed to achieve maximum impacts, including the use of the Plateau People's Web Portal, a digital tool designed to help Native communities to manage, circulate, and curate their digital materials using their own cultural protocols, language and social systems. This regional collaboration includes partnerships with the Confederated Tribes of Warm Springs (Oregon), Confederated Tribes of the Colville Reservation (Washington), and the Coeur D'Alene Tribe (Idaho).

Designing a Middle Grades Spatial Skills Curriculum

This project will create a portable training system that can be easily deployed in middle grades (5th-7th grade) as a prototype for increasing students' spatial reasoning skills. The project will study gender differences in spatial reasoning and examine how learning experiences can be designed to develop spatial skills using Minecraft as a platform.

Lead Organization(s): 
Award Number: 
1720801
Funding Period: 
Sat, 07/01/2017 to Tue, 06/30/2020
Full Description: 

The ability to make spatial judgements and visualize has been shown to be a strong indicator of students' future success in STEM-related courses. The project is innovative because it uses a widely available gaming environment, Minecraft, to examine spatial reasoning. Finding learning experiences which support students' spatial reasoning in an authentic and engaging way is a challenge in the field. This project will create a portable training system that can be easily deployed in middle grades (5th-7th grade) as a prototype for increasing students' spatial reasoning skills. The project will study gender differences in spatial reasoning and examine how learning experiences can be designed to develop spatial skills using Minecraft as a platform. The resources will incorporate hands-on learning and engage students in building virtual structures using spatial reasoning. The curriculum materials are being designed to be useful in other middle grades contexts.

The study is a design and development study that will design four training modules intended to improve spatial reasoning in the following areas: rotation, mental slicing, 2D to 3D transformation and perspective taking. The research questions are: (1) Does a Minecraft-based intervention that targets specific spatial reasoning tasks improve middle grade learners' spatial ability? (2) Does spatial skills growth differ by gender? The experimental design will compare the influence of the virtual spatial learning environment alone vs. the use of design challenges designed specifically for the spatial skills. The data collected will include assessments of spatial reasoning and feedback from teachers' who use the materials. The spatial skills measures will be administered as a pre-test, post-test, and six-month follow-up assessment to measure long term effects.

Perceptual and Implementation Strategies for Knowledge Acquisition of Digital Tactile Graphics for Blind and Visually Impaired Students (Collaborative Research: Gorlewicz)

This project lays the foundation and framework for enabling digital, multimodal tactile graphics on touchscreens for individuals with visual impairments (VI). Given the low-cost, portability, and wide availability of touchscreens, this work promotes the use of vibrations and sounds on these readily available platforms for addressing the graphical access challenge for individuals with VI.

Lead Organization(s): 
Award Number: 
1644538
Funding Period: 
Sun, 01/15/2017 to Tue, 12/31/2019
Full Description: 

Students with disabilities often have fewer opportunities for experiential learning, an important component of quality STEM education. With continued shifts toward the use of digital media to supplement instruction in STEM classrooms, much of the content remains inaccessible, particular for students with visual impairments. The promise of technology and use of tactile graphics is an effective, emerging innovation for providing more complete access to important information and materials. Tactile graphics are images that use raised surfaces to convey non-textual information such as maps, paintings, graphs and diagrams. Touchscreen-based smart devices allow visual information to be digitally and dynamically represented via tactile, auditory, visual, and kinesthetic feedback. Tactile graphic technology embedded in touchscreen devices can be leveraged to make STEM content more accessible to blind and visually impaired students.

This project will develop a learner-centered, perceptually-motivated framework addressing the requirements for students with blindness and visual impairments to access graphical content in STEM. Using TouchSense technology, the investigators will create instructional materials using tactile graphics and test them in a pilot classroom of both sighted and BVI students. The investigators will work with approximately 150 students with visual impairments to understand the kind of feedback that is most appropriate for specific content in algebra (coordinate plane), cell biology, and geography. Qualitative research methods will be used to analyze the video-based data set.

Perceptual and Implementation Strategies for Knowledge Acquisition of Digital Tactile Graphics for Blind and Visually Impaired Students (Collaborative Research: Stefik)

This project lays the foundation and framework for enabling digital, multimodal tactile graphics on touchscreens for individuals with visual impairments (VI). Given the low-cost, portability, and wide availability of touchscreens, this work promotes the use of vibrations and sounds on these readily available platforms for addressing the graphical access challenge for individuals with VI.

Award Number: 
1644491
Funding Period: 
Sun, 01/15/2017 to Tue, 12/31/2019
Full Description: 

Students with disabilities often have fewer opportunities for experiential learning, an important component of quality STEM education. With continued shifts toward the use of digital media to supplement instruction in STEM classrooms, much of the content remains inaccessible, particular for students with visual impairments. The promise of technology and use of tactile graphics is an effective, emerging innovation for providing more complete access to important information and materials. Tactile graphics are images that use raised surfaces to convey non-textual information such as maps, paintings, graphs and diagrams. Touchscreen-based smart devices allow visual information to be digitally and dynamically represented via tactile, auditory, visual, and kinesthetic feedback. Tactile graphic technology embedded in touchscreen devices can be leveraged to make STEM content more accessible to blind and visually impaired students.

This project will develop a learner-centered, perceptually-motivated framework addressing the requirements for students with blindness and visual impairments to access graphical content in STEM. Using TouchSense technology, the investigators will create instructional materials using tactile graphics and test them in a pilot classroom of both sighted and BVI students. The investigators will work with approximately 150 students with visual impairments to understand the kind of feedback that is most appropriate for specific content in algebra (coordinate plane), cell biology, and geography. Qualitative research methods will be used to analyze the video-based data set.

Pages

Subscribe to Technology