Technology

CAREER: Bridging the Digital Accessibility Gap in STEM Using Multisensory Haptic Platforms

This project investigates how to use new touch technologies, like touchscreens, to create graphics and simulations that can be felt, heard, and seen. Using readily available, low-cost systems, the principal investigator will investigate how to map visual information to touch and sound for students with visual impairments.

Lead Organization(s): 
Award Number: 
1845490
Funding Period: 
Thu, 08/01/2019 to Wed, 07/31/2024
Full Description: 

Consider learning visual subjects such as math, engineering, or science without being able to see. Suddenly, the graphs, charts, and diagrams that provide a quick way to gather information are no longer effective. This is a challenge that students with visual impairments face in classrooms today as educational materials are most often presented electronically. The current way that individuals with visual impairments "read" graphics is through touch, feeling raised dots and patterns on paper that represent images. Creating these touch-based graphics requires extensive time and resources, and the output provides a static, hard-copy image. Lack of access to graphics in STEM subjects is one of the most pressing challenges currently facing individuals with visual impairments. This is a concern given the low representation of students with these disabilities in STEM fields and professions.

This project investigates how to use new touch technologies, like touchscreens, to create graphics and simulations that can be felt, heard, and seen. Using readily available, low-cost systems, the principal investigator will investigate how to map visual information to touch and sound. This research builds on prior research focused on representing the building blocks of graphics (points, lines, and shapes) nonvisually. In this project, the investigator will determine how to represent more challenging graphics such as charts, plots, and diagrams, nonvisually. The project will then explore the role of touch feedback in interactive simulations, which have moving elements that change with user input, making nonvisual access challenging. Finally, the projects extends the research to students with other disabilities, toward understanding the benefits and changes necessary for touch technologies to have broad impact. The project involves group and single-subject designs with approximately 65 students with visual impairments and focuses on the following outcomes of interest: students' graph literacy, percent correct on task assessments, time of exploration, response time, number of revisits to particular areas of the graphic, and number of switches between layers. Working closely with individuals with disabilities and their teachers, this work seeks to bridge the current graphical accessibility gap in STEM and raise awareness of universal design in technology use and development.

STEM Sea, Air, and Land Remotely Operated Vehicle Design Challenges for Rural, Middle School Youth

This project provides middle school students in a high poverty rural area in Northern Florida an opportunity to pursue post-secondary study in STEM by providing quality and relevant STEM design. The project will integrate engineering design, technology and society, electrical knowledge, and computer science to improve middle school students' spatial reasoning through experiences embedded within engineering design challenges.

Award Number: 
1812913
Funding Period: 
Mon, 04/01/2019 to Thu, 03/31/2022
Full Description: 

This project provides middle school students in a high poverty rural area in Northern Florida an opportunity to pursue post-secondary study in STEM by providing quality and relevant STEM design. The design challenges will be contextualized within a rural region (i.e., GIS mapping and drones used for surveying large ranches, farms, and forests), producing a series of six design challenge modules and two competition design challenges with accompanying teacher guides for preparing relevant STEM modules for 90 middle school aged students. The project will integrate 4 components: (a) engineering design, (b) technology and society, (c) electrical knowledge, and (d) computer science. The project aims to improve middle school students' spatial reasoning through experiences embedded within engineering design challenges.

Collaborative partners consisting of school level, college level, and STEM professionals will develop the design challenges, using best practices from STEM learning research, with the intent of advancing STEM pathway awareness and participation among historically underserved students in the rural, high-poverty region served by North Florida Community College. Data regarding student outcomes will be collected before and after implementation, including measures of content mastery, spatial reasoning skills, self-efficacy, attitudes and interests in STEM, and academic achievement in science courses. Assessment of the data will involve the research and development phases of six curriculum modules and (2) an intervention study following a delayed-treatment design model.

There is a growing need for the increased broadening of STEM by underserved groups. By increasing the number of rural students who participate in STEM hands on, interdisciplinary experiences, the project has the potential to expand interest and competency in mathematics and science and expand the number of students who are aware of STEM career pathways.

Accelerating Higher Order Thinking and STEM Content Learning Among Students with Learning Disabilities

The purpose of this project is to develop and refine an innovative Google-platform based application called CORGI for use with middle school students in physical, life, and earth science classrooms. The new version, CORGI_2, will include supports for content learning and higher order thinking and will pair with the cloud-based applications of the Google environment to offer multiple means of representation, response and engagement as well as videos, models, supports for decoding, and supports for background knowledge.

Award Number: 
1813556
Funding Period: 
Sat, 09/01/2018 to Wed, 08/31/2022
Full Description: 

The need for reduction in achievement gaps and the growing adoption of rigorous curriculum standards has raised expectations for all students, but especially for students with learning disabilities. Students are expected to learn science concepts and use their understanding to investigate the natural world through scientific inquiry. They must also develop higher-order reasoning skills, integrate knowledge and ideas using primary sources, use causal reasoning to understand the chain of events, delineate and evaluate claims, and assess the reasoning used in arguments. Lower participation and achievement in science courses makes students with learning disabilities less likely to pursue STEM degrees, STEM careers, and succeed in the labor market where higher order thinking skills and scientific literacy are increasingly important. It is important to develop innovative tools that build on evidence based practices in combination with promising new technologies to improve the academic trajectory in STEM disciplines. The purpose of this project is to develop and refine an innovative Google-platform based application called CORGI for use with middle school students in physical, life, and earth science classrooms. The new version, CORGI_2, will include supports for content learning and higher order thinking and will pair with the cloud-based applications of the Google environment to offer multiple means of representation, response and engagement as well as videos, models, supports for decoding, and supports for background knowledge. The team will refine CORGI to offer enhanced functionality and supports for scientific argumentation, concept mastery, collaboration strategies and social skills for cooperative groups.  Technology enhancements will include multimedia input and output, writing supports (e.g., sentence starters), discussion threads, and affective reactions to content/lessons.

The research team will work with both teachers and students to develop integrated units, new higher order thinking routines, learning and collaboration strategies, and new technological functionality in CORGI_2. Researcher-practitioner-student design teams will use Design-Based Intervention Research (DBR) methods to iteratively: (a) identify the science content for inclusion, (b) develop integrated content units in life, physical, and earth science, (c) integrate additional higher order thinking and learning strategies to promote higher-order thinking and reasoning, and (c) design and implement additional UDL and mobile functionality for CORGI_2. Participants will include 30 middle school teachers and approximately 200 students with learning disabilities, including reading disabilities. Researchers will collect formative evaluation data from teachers and students to examine the usability, science content learning, higher order thinking skills, engagement, and motivation of general education and special education students in middle school classrooms. Professional development modules will be developed to support the DBR cycles as well as to support wider scale adoption and use by all students.

Professional Development Supports for Teaching Bioinformatics through Mobile Learning

This project will investigate the professional development supports needed for teaching bioinformatics at the high school level. The project team will work with biology and mathematics teachers to co-design instructional modules to engage students with core bioinformatics concepts and computational literacies, by focusing on local community health issues supported through mobile learning activities.

Lead Organization(s): 
Award Number: 
1812738
Funding Period: 
Sat, 09/01/2018 to Mon, 02/28/2022
Full Description: 

Bioinformatics is an emerging area of research that develops new knowledge through computational analysis of vast biological and biomedical data. This project will investigate the professional development supports needed for teaching bioinformatics at the high school level. Building from a robust literature in professional development design research, project team will work with biology and mathematics teachers to co-design instructional modules to engage students with core bioinformatics concepts and computational literacies, by focusing on local community health issues supported through mobile learning activities. The overarching goal of the project is to help create an engage population of informatics-informed students who are capable of critically analyzing information and able to solve local problems related to their health and well-being.

The project team will use a design-based implementation research approach to identify the curricular and instructional supports needed to achieve the teaching and learning goals through iterative project revisions, employing mixed methods to evaluate teacher and student learning processes and outcomes. Teachers from local high needs schools will participate in a three-week summer workshop, where they will learn about state-of-the-art bioinformatics content, project-based pedagogies that promote computational literacy, and strategies integrate mobile technologies into instruction.  They will implement the instructional units during the year, and the summer workshop will be revised and delivered to an expanded cohort of teachers the following summer. The data collection and analysis conducted on teachers' enactment of these modules will reveal the professional development and implementation areas needed to support particular populations, specifically underrepresented groups in STEM, to engage with bioinformatics learning and take authentic action on local community issues.

Supporting Teachers in Responsive Instruction for Developing Expertise in Science (Collaborative Research: Linn)

This project takes advantage of advanced technologies to support science teachers to rapidly respond to diverse student ideas in their classrooms. Students will use web-based curriculum units to engage with models, simulations, and virtual experiments to write multiple explanations for standards-based science topics. The project will also design planning tools for teachers that will make suggestions relevant research-proven instructional strategies based on the real-time analysis of student responses.

Partner Organization(s): 
Award Number: 
1813713
Funding Period: 
Sat, 09/01/2018 to Wed, 08/31/2022
Full Description: 

Many teachers want to adapt their instruction to meet student learning needs, yet lack the time to regularly assess and analyze students' developing understandings. The Supporting Teachers in Responsive Instruction for Developing Expertise in Science (STRIDES) project takes advantage of advanced technologies to support science teachers to rapidly respond to diverse student ideas in their classrooms. In this project students will use web-based curriculum units to engage with models, simulations, and virtual experiments to write multiple explanations for standards-based science topics. Advanced technologies (including natural language processing) will be used to assess students' written responses and summaries their science understanding in real-time. The project will also design planning tools for teachers that will make suggestions relevant research-proven instructional strategies based on the real-time analysis of student responses. Research will examine how teachers make use of the feedback and suggestions to customize their instruction. Further we will study how these instructional changes help students develop coherent understanding of complex science topics and ability to make sense of models and graphs. The findings will be used to refine the tools that analyze the student essays and generate the summaries; improve the research-based instructional suggestions in the planning tool; and strengthen the online interface for teachers. The tools will be incorporated into open-source, freely available online curriculum units. STRIDES will directly benefit up to 30 teachers and 24,000 students from diverse school settings over four years.

Leveraging advances in natural language processing methods, the project will analyze student written explanations to provide fine-grained summaries to teachers about strengths and weaknesses in student work. Based on the linguistic analysis and logs of student navigation, the project will then provide instructional customizations based on learning science research, and study how teachers use them to improve student progress. Researchers will annually conduct at least 10 design or comparison studies, each involving up to 6 teachers and 300-600 students per year. Insights from this research will be captured in automated scoring algorithms, empirically tested and refined customization activities, and data logging techniques that can be used by other research and curriculum design programs to enable teacher customization.

Engaging High School Students in Computer Science with Co-Creative Learning Companions (Collaborative Research: Magerko)

This research investigates how state-of-the-art creative and pedagogical agents can improve students' learning, attitudes, and engagement with computer science. The project will be conducted in high school classrooms using EarSketch, an online computer science learning environments that engages learners in making music with JavaScript or Python code.

Award Number: 
1814083
Funding Period: 
Sat, 09/15/2018 to Wed, 08/31/2022
Full Description: 
This research investigates how state-of-the-art creative and pedagogical agents can improve students' learning, attitudes, and engagement with computer science. The project will be conducted in high school classrooms using EarSketch, an online computer science learning environments that engages over 160,000 learners worldwide in making music with JavaScript or Python code. The researchers will build the first co-creative learning companion, Cai, that will scaffold students with pedagogical strategies that include making use of learner code to illustrate abstraction and modularity, suggesting new code to scaffold new concepts, providing help and hints, and explaining its decisions. This work will directly address the national need to develop computing literacy as a core STEM skill.
 
The proposed work brings together an experienced interdisciplinary team to investigate the hypothesis that adding a co-creative learning companion to an expressive computer science learning environment will improve students' computer science learning (as measured by code sophistication and concept knowledge), positive attitudes towards computing (self-efficacy and motivation), and engagement (focused attention and involvement during learning). The iterative design and development of the co-creative learning companion will be based on studies of human collaboration in EarSketch classrooms, the findings in the co-creative literature and virtual agents research, and the researchers' observations of EarSketch use in classrooms. This work will address the following research questions: 1) What are the foundational pedagogical moves that a co-creative learning companion for expressive programming should perform?; 2) What educational strategies for a co-creative learning companion most effectively scaffold learning, favorable attitudes toward computing, and engagement?; and 3) In what ways does a co-creative learning companion in EarSketch increase computer science learning, engagement, and positive attitudes toward computer science when deployed within the sociocultural context of a high school classroom? The proposed research has the potential to transform our understanding of how to support student learning in and broaden participation through expressive computing environments.

Understanding the Role of Simulations in K-12 Science and Mathematics Teacher Education

This project will develop and implement a working conference for scholars and practitioners to articulate current use cases and theories of action regarding the use of simulations in PreK-12 science and mathematics teacher education. The conference will be structured to provide opportunities for attendees to share their current research, theoretical models, conceptual views, and use cases focused on the design and use of digital and non-digital simulations for building and assessing K-12 science and mathematics teacher competencies.

Lead Organization(s): 
Award Number: 
1813476
Funding Period: 
Sat, 09/01/2018 to Sat, 08/31/2019
Full Description: 

The recent emergence of updated learning standards in science and mathematics, coupled with increasingly diverse school students across the nation, has highlighted the importance of updating professional learning opportunities for science and mathematics teachers. One promising approach that has emerged is the use of simulations to engage teachers in approximations of practice where the focus is on helping them learn how to engage in ambitious content teaching. In particular, recent technological advances have supported the emergence of new kinds of digital simulations and have brought increased attention to simulations as a tool to enhance teacher learning. This project will develop and implement a working conference for scholars and practitioners to articulate current use cases and theories of action regarding the use of simulations in PreK-12 science and mathematics teacher education. The conference will be structured to provide opportunities for attendees to share their current research, theoretical models, conceptual views, and use cases focused on the design and use of digital and non-digital simulations for building and assessing K-12 science and mathematics teacher competencies.

While the use of simulations in teacher education is neither new nor limited to digital simulation, emerging technological capabilities have enabled digital simulations to become practical in ways not formerly available. The current literature base, however, is dated and the field lacks clear theoretic models or articulated theories of action regarding what teachers could or should learn via simulations, and the essential components of effective learning trajectories. This working conference will be structured to provide opportunities for attending, teacher educators, researchers, professional development facilitators, policy makers, preservice and inservice teachers, and school district leaders to share their current research, theoretical models, conceptual views, and use cases regarding the role of simulations in K-12 science and mathematics teacher education. The conference will be organized around four major goals, including: (1) Define how simulations (digital and non-digital) are conceptualized, operationalized, and utilized in K-12 science and mathematics teacher education; (2) Document and determine the challenges and affordances of the varied contexts, audiences, and purposes for which simulations are used in K-12 science and mathematics teacher education and the variety of investigation methods and research questions employed to investigate the use of simulations in these settings; (3) Make explicit the theories of action and conceptual views undergirding the various simulation models being used in K-12 science and mathematics teacher education; and (4) Determine implications of the current research and development work in this space and establish an agenda for studying the use of simulations in K-12 science and mathematics teacher education. The project will produce a white paper that presents the research and development agenda developed by the working conference, describes a series of use cases describing current and emergent practice, and identifies promising directions for future research and development in this area. Conference outcomes are expected to advance understanding of the varied ways in which digital and non-digital simulations can be used to foster and assess K-12 science and mathematics teacher competencies and initiate a research and development agenda for examining the role of simulations in K-12 science and mathematics teacher education.


Project Videos

2019 STEM for All Video Showcase

Title: Understanding the Role of Simulations in Teacher Preparation

Presenter(s): Lisa Dieker, Angelica Fulchini Scruggs, Heather Howell, Michael Hynes, & Jamie Mikeska


Design and Development of Transmedia Narrative-based Curricula to Engage Children in Scientific Thinking and Engineering Design (Collaborative Research: Ellis)

This project will address the need for engineering resources by applying an innovative pedagogy called Imaginative Education (IE) to create middle school engineering curricula. In IE, developmentally appropriate narratives are used to design learning environments that help learners engage with content and organize their knowledge productively. This project will combine IE with transmedia storytelling.

Lead Organization(s): 
Award Number: 
1814033
Funding Period: 
Sun, 07/15/2018 to Thu, 06/30/2022
Full Description: 

Engineering is an important component of the Next Generation Science Standards (NGSS). However, resources for supporting teachers in implementing these standards are scarce. This project will address the need for resources by applying an innovative pedagogy called Imaginative Education (IE) to create middle school engineering curricula. In IE, developmentally appropriate narratives are used to design learning environments that help learners engage with content and organize their knowledge productively. To fully exploit the potential of this pedagogy, this project will combine IE with transmedia storytelling. In transmedia storytelling, different elements of a narrative are spread across a variety of formats (such as books, websites, new articles, videos and other media) in a way that creates a coordinated experience for the user. Once created, the curricula will be implemented in classrooms to research its impact on (1) increasing learners' capacities to engage in both innovative and direct application of engineering concepts, and (2) improving learners' science, technology, engineering, and mathematics (STEM) identity. 

This research will be led by Smith College and Springfield Technical Community College in collaboration with Springfield (MA) Public Schools (SPS). Additional expertise in evaluating the findings will be provided by the Collaborative for Educational Services and an external advisory board of leaders in STEM education and transmedia storytelling. The project will result in the development of a transmedia learning environment that includes two NGSS-aligned, interdisciplinary engineering units and seven lessons that integrate science and engineering. The research study will be implemented in four phases in eight SPS middle schools. Approximately 900 students will participate each year. In Phase 1, the project team will collaborate with SPS teachers to create engineering units, lessons, and standards-based achievement measures. In Phase 2, teachers in the treatment group will participate in professional development (PD) workshops covering IE, transmedia learning environments, structure of the curriculum, and connections to NGSS. In Phase 3 the curricula will be implemented in treatment classrooms and both treatment and control group students will be assessed. In Phase 4, testing and assessment will continue in SPS schools and will be expanded to rural and suburban classrooms. Teachers in these classrooms will use online multimedia PD that will ensure scalability and mirrors the structure and content of in-person PD. Data analysis will provide evidence of whether this imaginative and transmedia educational approach improves students' capacities for using engineering concepts and enhances their STEM identity.


Project Videos

2019 STEM for All Video Showcase

Title: Transforming Engineering Education for Middle School (TEEMS)

Presenter(s): Beth McGinnis-Cavanaugh, Sonia Ellis, & Crystal Ford


Design and Development of Transmedia Narrative-based Curricula to Engage Children in Scientific Thinking and Engineering Design (Collaborative Research: McGinnis-Cavanaugh)

This project will address the need for engineering resources by applying an innovative pedagogy called Imaginative Education (IE) to create middle school engineering curricula. In IE, developmentally appropriate narratives are used to design learning environments that help learners engage with content and organize their knowledge productively. This project will combine IE with transmedia storytelling.

Partner Organization(s): 
Award Number: 
1813572
Funding Period: 
Sun, 07/15/2018 to Thu, 06/30/2022
Project Evaluator: 
Collaborative for Educational Services (CES)
Full Description: 

Engineering is an important component of the Next Generation Science Standards (NGSS). However, resources for supporting teachers in implementing these standards are scarce. This project will address the need for resources by applying an innovative pedagogy called Imaginative Education (IE) to create middle school engineering curricula. In IE, developmentally appropriate narratives are used to design learning environments that help learners engage with content and organize their knowledge productively. To fully exploit the potential of this pedagogy, this project will combine IE with transmedia storytelling. In transmedia storytelling, different elements of a narrative are spread across a variety of formats (such as books, websites, new articles, videos and other media) in a way that creates a coordinated experience for the user. Once created, the curricula will be implemented in classrooms to research its impact on (1) increasing learners' capacities to engage in both innovative and direct application of engineering concepts, and (2) improving learners' science, technology, engineering, and mathematics (STEM) identity. 

This research will be led by Smith College and Springfield Technical Community College in collaboration with Springfield (MA) Public Schools (SPS). Additional expertise in evaluating the findings will be provided by the Collaborative for Educational Services and an external advisory board of leaders in STEM education and transmedia storytelling. The project will result in the development of a transmedia learning environment that includes two NGSS-aligned, interdisciplinary engineering units and seven lessons that integrate science and engineering. The research study will be implemented in four phases in eight SPS middle schools. Approximately 900 students will participate each year. In Phase 1, the project team will collaborate with SPS teachers to create engineering units, lessons, and standards-based achievement measures. In Phase 2, teachers in the treatment group will participate in professional development (PD) workshops covering IE, transmedia learning environments, structure of the curriculum, and connections to NGSS. In Phase 3 the curricula will be implemented in treatment classrooms and both treatment and control group students will be assessed. In Phase 4, testing and assessment will continue in SPS schools and will be expanded to rural and suburban classrooms. Teachers in these classrooms will use online multimedia PD that will ensure scalability and mirrors the structure and content of in-person PD. Data analysis will provide evidence of whether this imaginative and transmedia educational approach improves students' capacities for using engineering concepts and enhances their STEM identity.


Project Videos

2019 STEM for All Video Showcase

Title: Transforming Engineering Education for Middle School (TEEMS)

Presenter(s): Beth McGinnis-Cavanaugh, Sonia Ellis, & Crystal Ford


Project MAPLE: Makerspaces Promoting Learning and Engagement

The project plans to develop and study a series of metacognitive strategies that support learning and engagement for struggling middle school students during makerspace experiences. The study will focus narrowly on establishing a foundational understanding of how to ameliorate barriers to engaging in design learning through the use of metacognitive strategies.

Award Number: 
1721236
Funding Period: 
Fri, 09/01/2017 to Sat, 08/31/2019
Full Description: 

The project plans to develop and study a series of metacognitive strategies that support learning and engagement for struggling middle school students during makerspace experiences. The makerspace movement has gained recognition and momentum, which has resulted in many schools integrating makerspace technologies and related curricular practices into the classroom. The study will focus narrowly on establishing a foundational understanding of how to ameliorate barriers to engaging in design learning through the use of metacognitive strategies. The project plans to translate and apply research on the use of metacognitive strategies in supporting struggling learners to develop approaches that teachers can implement to increase opportunities for students who are the most difficult to reach academically. Project strategies, curricula, and other resources will be disseminated through existing outreach websites, research briefs, peer-reviewed publications for researchers and practitioners, and a webinar for those interested in middle-school makerspaces for diverse learners.

The research will address the paucity of studies to inform practitioners about what pedagogical supports help struggling learners engage in these makerspace experiences. The project will focus on two populations of struggling learners in middle schools, students with learning disabilities, and students at risk for academic failure. The rationale for focusing on metacognition within makerspace activities comes from the literature on students with learning disabilities and other struggling learners that suggests that they have difficulty with metacognitive thinking. Multiple instruments will be used to measure metacognitive processes found to be pertinent within the research process. The project will tentatively focus on persistence (attitudes about making), iteration (productive struggle) and intentionality (plan with incremental steps). The work will result in an evidence base around new instructional practices for middle school students who are struggling learners so that they can experience more success during maker learning experiences.

Pages

Subscribe to Technology