Biology

Promoting Engineering Problem Framing Skill-Development in High School Science and Engineering Courses

This project will develop curricular activities and assessment guidance for K-12 science and engineering educators who seek to incorporate engineering design content into their biology, chemistry, and physics classes.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1812823
Funding Period: 
Wed, 08/01/2018 to Sat, 07/31/2021
Full Description: 

This collaborative project involving Ohio Northern University, Ohio State University, and Olathe Northwest High School will develop curricular activities and assessment guidance for K-12 science and engineering educators who seek to incorporate engineering design content into their biology, chemistry, and physics classes. This work is important because students' limited exposure to engineering activities can negatively impact their decisions to enroll in STEM courses and to pursue engineering careers. Further, many states are adopting or considering adopting the Next Generation Science Standards (NGSS), a set of classroom standards which integrate engineering content into traditional science disciplines. While high school teachers under these standards are expected to incorporate the cross-cutting engineering content into their courses, they generally receive little high-quality support for doing so. If successful, the project could provide a powerful model of how to support busy and resource-constrained STEM teachers, and create broader student interest in STEM careers.

Drawing from best practices on instructional design, the project's main objectives are to: (1) design, field-test, and evaluate the impact of 12 NGSS-aligned, engineering problem-framing design activities on students enrolled in grades 9-12 science courses and (2) design and conduct high-quality, sustained professional development that fosters participating high school science teachers' ability to deploy the NGSS concepts-linked activities. Data sources include student design artifacts, video of classroom instruction, and surveys assessing student and teacher attitudes toward engineering, student design self-efficacy and teacher self-efficacy for teaching engineering content. These data will be analyzed to determine what teachers learned from the professional development activities, how those activities informed their teaching and in turn, how students' engagement with the engineering activities relates to their engineering design skills and attitudes. In terms of intellectual merit, the project aims to develop a learning progression of students' engineering design problem-framing skills by characterizing any observed change in students' design work and attitudes over time.

Design and Development of Transmedia Narrative-based Curricula to Engage Children in Scientific Thinking and Engineering Design (Collaborative Research: Ellis)

This project will address the need for engineering resources by applying an innovative pedagogy called Imaginative Education (IE) to create middle school engineering curricula. In IE, developmentally appropriate narratives are used to design learning environments that help learners engage with content and organize their knowledge productively. This project will combine IE with transmedia storytelling.

Lead Organization(s): 
Award Number: 
1814033
Funding Period: 
Sun, 07/15/2018 to Thu, 06/30/2022
Full Description: 

Engineering is an important component of the Next Generation Science Standards (NGSS). However, resources for supporting teachers in implementing these standards are scarce. This project will address the need for resources by applying an innovative pedagogy called Imaginative Education (IE) to create middle school engineering curricula. In IE, developmentally appropriate narratives are used to design learning environments that help learners engage with content and organize their knowledge productively. To fully exploit the potential of this pedagogy, this project will combine IE with transmedia storytelling. In transmedia storytelling, different elements of a narrative are spread across a variety of formats (such as books, websites, new articles, videos and other media) in a way that creates a coordinated experience for the user. Once created, the curricula will be implemented in classrooms to research its impact on (1) increasing learners' capacities to engage in both innovative and direct application of engineering concepts, and (2) improving learners' science, technology, engineering, and mathematics (STEM) identity. 

This research will be led by Smith College and Springfield Technical Community College in collaboration with Springfield (MA) Public Schools (SPS). Additional expertise in evaluating the findings will be provided by the Collaborative for Educational Services and an external advisory board of leaders in STEM education and transmedia storytelling. The project will result in the development of a transmedia learning environment that includes two NGSS-aligned, interdisciplinary engineering units and seven lessons that integrate science and engineering. The research study will be implemented in four phases in eight SPS middle schools. Approximately 900 students will participate each year. In Phase 1, the project team will collaborate with SPS teachers to create engineering units, lessons, and standards-based achievement measures. In Phase 2, teachers in the treatment group will participate in professional development (PD) workshops covering IE, transmedia learning environments, structure of the curriculum, and connections to NGSS. In Phase 3 the curricula will be implemented in treatment classrooms and both treatment and control group students will be assessed. In Phase 4, testing and assessment will continue in SPS schools and will be expanded to rural and suburban classrooms. Teachers in these classrooms will use online multimedia PD that will ensure scalability and mirrors the structure and content of in-person PD. Data analysis will provide evidence of whether this imaginative and transmedia educational approach improves students' capacities for using engineering concepts and enhances their STEM identity.


Project Videos

2019 STEM for All Video Showcase

Title: Transforming Engineering Education for Middle School (TEEMS)

Presenter(s): Beth McGinnis-Cavanaugh, Sonia Ellis, & Crystal Ford


Design and Development of Transmedia Narrative-based Curricula to Engage Children in Scientific Thinking and Engineering Design (Collaborative Research: McGinnis-Cavanaugh)

This project will address the need for engineering resources by applying an innovative pedagogy called Imaginative Education (IE) to create middle school engineering curricula. In IE, developmentally appropriate narratives are used to design learning environments that help learners engage with content and organize their knowledge productively. This project will combine IE with transmedia storytelling.

Partner Organization(s): 
Award Number: 
1813572
Funding Period: 
Sun, 07/15/2018 to Thu, 06/30/2022
Project Evaluator: 
Collaborative for Educational Services (CES)
Full Description: 

Engineering is an important component of the Next Generation Science Standards (NGSS). However, resources for supporting teachers in implementing these standards are scarce. This project will address the need for resources by applying an innovative pedagogy called Imaginative Education (IE) to create middle school engineering curricula. In IE, developmentally appropriate narratives are used to design learning environments that help learners engage with content and organize their knowledge productively. To fully exploit the potential of this pedagogy, this project will combine IE with transmedia storytelling. In transmedia storytelling, different elements of a narrative are spread across a variety of formats (such as books, websites, new articles, videos and other media) in a way that creates a coordinated experience for the user. Once created, the curricula will be implemented in classrooms to research its impact on (1) increasing learners' capacities to engage in both innovative and direct application of engineering concepts, and (2) improving learners' science, technology, engineering, and mathematics (STEM) identity. 

This research will be led by Smith College and Springfield Technical Community College in collaboration with Springfield (MA) Public Schools (SPS). Additional expertise in evaluating the findings will be provided by the Collaborative for Educational Services and an external advisory board of leaders in STEM education and transmedia storytelling. The project will result in the development of a transmedia learning environment that includes two NGSS-aligned, interdisciplinary engineering units and seven lessons that integrate science and engineering. The research study will be implemented in four phases in eight SPS middle schools. Approximately 900 students will participate each year. In Phase 1, the project team will collaborate with SPS teachers to create engineering units, lessons, and standards-based achievement measures. In Phase 2, teachers in the treatment group will participate in professional development (PD) workshops covering IE, transmedia learning environments, structure of the curriculum, and connections to NGSS. In Phase 3 the curricula will be implemented in treatment classrooms and both treatment and control group students will be assessed. In Phase 4, testing and assessment will continue in SPS schools and will be expanded to rural and suburban classrooms. Teachers in these classrooms will use online multimedia PD that will ensure scalability and mirrors the structure and content of in-person PD. Data analysis will provide evidence of whether this imaginative and transmedia educational approach improves students' capacities for using engineering concepts and enhances their STEM identity.


Project Videos

2019 STEM for All Video Showcase

Title: Transforming Engineering Education for Middle School (TEEMS)

Presenter(s): Beth McGinnis-Cavanaugh, Sonia Ellis, & Crystal Ford


Extending and Investigating the Impact of the High School Model-based Educational Resource (Collaborative Research: Wilson)

This project builds on a line of work that has developed and studied the Model Based Educational Resource (MBER), a year-long curriculum for high school biology. The project will generate rigorous causal evidence on how this approach to biology teaching and learning can support student learning, and foundational information on how to support high school teachers in improving their teaching. It will also provide resources to expand and update MBER to reflect the changing high school science landscape by integrating Earth Science standards into the year long sequence.

Lead Organization(s): 
Award Number: 
1813538
Funding Period: 
Wed, 08/01/2018 to Sun, 07/31/2022
Full Description: 

This project builds on a line of work that has developed and studied the Model Based Educational Resource (MBER), a year-long curriculum for high school biology. In classrooms using MBER, modeling serves as an anchoring practice that keeps the inquiry tied to the goal of making sense of the world, helping teachers to engage their students in a range of cognitive and social activities that lead to deep understanding of scientific ideas. This project will generate rigorous causal evidence on how this approach to biology teaching and learning can support student learning, and foundational information on how to support high school teachers in improving their teaching. This funding will also provide resources to expand and update MBER to reflect the changing high school science landscape by integrating Earth Science standards into the year long sequence. The study will address the general research question: What is the impact of the Model Based Educational Resource (MBER) on high school students' science achievement, and what factors influence that impact? In addition to generating important research findings, the materials revised and studied in this project will be open-source and freely available to teachers and schools.

This study addresses a significant gap in the research on next generation curriculum materials. While there is emerging agreement about the importance of instructional materials in supporting teachers in effectively engaging students in the practices of science, there is very little empirical evidence to support such claims. The goal of this project is to study the impact of the MBER program through a cluster randomized trial and expand the promise of efficacy and feasibility established in previous work. This study will be able to make causal claims by using an experimental design in which 32 high school teachers serve as their own controls, and by using multi-level modeling in the analysis. This study will advance the field's knowledge about the impact of innovative materials on student learning, measured by both project-level assessments and the state science test. Exploratory research questions will examine a) how using the MBER program develops teachers' vision of the Next Generation Science Standards, b) how student learning is mediated by the fidelity of implementation of the materials, c) how teachers interact with materials designed to be modified for their classroom context, and d) to what extent the MBER materials provide equitable opportunities to learn and close achievement gaps.

Extending and Investigating the Impact of the High School Model-based Educational Resource (Collaborative Research: Passmore)

This project builds on a line of work that has developed and studied the Model Based Educational Resource (MBER), a year-long curriculum for high school biology. The project will generate rigorous causal evidence on how this approach to biology teaching and learning can support student learning, and foundational information on how to support high school teachers in improving their teaching. It will also provide resources to expand and update MBER to reflect the changing high school science landscape by integrating Earth Science standards into the year long sequence.

Partner Organization(s): 
Award Number: 
1814263
Funding Period: 
Wed, 08/01/2018 to Sun, 07/31/2022
Full Description: 

This project builds on a line of work that has developed and studied the Model Based Educational Resource (MBER), a year-long curriculum for high school biology. In classrooms using MBER, modeling serves as an anchoring practice that keeps the inquiry tied to the goal of making sense of the world, helping teachers to engage their students in a range of cognitive and social activities that lead to deep understanding of scientific ideas. This project will generate rigorous causal evidence on how this approach to biology teaching and learning can support student learning, and foundational information on how to support high school teachers in improving their teaching. This funding will also provide resources to expand and update MBER to reflect the changing high school science landscape by integrating Earth Science standards into the year long sequence. The study will address the general research question: What is the impact of the Model Based Educational Resource (MBER) on high school students' science achievement, and what factors influence that impact? In addition to generating important research findings, the materials revised and studied in this project will be open-source and freely available to teachers and schools.

This study addresses a significant gap in the research on next generation curriculum materials. While there is emerging agreement about the importance of instructional materials in supporting teachers in effectively engaging students in the practices of science, there is very little empirical evidence to support such claims. The goal of this project is to study the impact of the MBER program through a cluster randomized trial and expand the promise of efficacy and feasibility established in previous work. This study will be able to make causal claims by using an experimental design in which 32 high school teachers serve as their own controls, and by using multi-level modeling in the analysis. This study will advance the field's knowledge about the impact of innovative materials on student learning, measured by both project-level assessments and the state science test. Exploratory research questions will examine a) how using the MBER program develops teachers' vision of the Next Generation Science Standards, b) how student learning is mediated by the fidelity of implementation of the materials, c) how teachers interact with materials designed to be modified for their classroom context, and d) to what extent the MBER materials provide equitable opportunities to learn and close achievement gaps.

A Practice-based Online Learning Environment for Scientific Inquiry with Digitized Museum Collections in Middle School Classrooms

This project will develop and study a prototype online learning environment that supports student learning via Engaging Practices for Inquiry with Collections in Bioscience (EPIC Bioscience), which uses authentic research investigations with digitized collections from natural history museums. 

Lead Organization(s): 
Award Number: 
1812844
Funding Period: 
Fri, 06/15/2018 to Mon, 05/31/2021
Full Description: 

There are an estimated 2-4 billion specimens in the world's natural history collections that contain the data necessary to address complex global issues, including biodiversity and climate. Digitized natural history collections present an untapped opportunity to engage learners in crucial questions of science with far-reaching potential consequences via object-based research investigations. This project will develop and study a prototype online learning environment that supports student learning via Engaging Practices for Inquiry with Collections in Bioscience (EPIC Bioscience). EPIC Bioscience uses authentic research investigations with digitized collections from natural history museums. The project team will create a curriculum aligned with the Next Generation of Science Standards (NGSS) for middle school students, emphasizing a major disciplinary core idea in grades 6-8 life science, Ecosystems: Interactions, Energy, and Dynamics. The project has three major goals: 1) Develop an online learning environment that guides students through research investigations using digitized natural history collections to teach NGSS life science standards. 2) Investigate how interactive features and conversational scaffolds in the EPIC Bioscience learning environment can promote deeper processing of science content and effective knowledge building. 3) Demonstrate effective approaches to using digitized collections objects for contextualized, research-based science learning that aligns to NGSS standards for middle school classrooms.

The project will examine how and when interactive features of a digital learning environment can be combined with deep questions and effective online scaffolds to promote student engagement, meaningful collaborative discourse, and robust learning outcomes during research with digitized museum collections. Research activities will address: How can interactive features of EPIC Bioscience help students learn disciplinary core ideas and cross cutting concepts via science practices through collections-based research? How can effective patterns of collaborative scientific discourse be supported and enhanced during online, collections-based research? How does the use of digitized scientific collections influence students' levels of engagement and depth of processing during classroom investigations? A significant impact of the proposed work is expanded opportunities for research with authentic museum objects for populations who are traditionally underserved in STEM and are underrepresented in museum visitor demographics (Title I schools, racial/ethnic minorities, and rural school populations). Research activities will engage over 1,500 Title I and rural students (50 classes across three years) in meaningful research investigations with collections objects that address pressing global issues.

CAREER: Supporting Elementary Science Teaching and Learning by Integrating Uncertainty Into Classroom Science Investigations

The goal of this study is to improve elementary science teaching and learning by developing, testing, and refining a framework and set of tools for strategically incorporating forms of uncertainty central to scientists' sense-making into students' empirical learning.

Lead Organization(s): 
Award Number: 
1749324
Funding Period: 
Fri, 06/01/2018 to Wed, 05/31/2023
Full Description: 

The goal of this study will be to improve elementary science teaching and learning by developing, testing, and refining a framework and set of tools for strategically incorporating forms of uncertainty central to scientists' sense-making into students' empirical learning. The framework will rest on the notion that productive uncertainty should be carefully built into students' empirical learning experiences in order to support their engagement in scientific practices and understanding of disciplinary ideas. To re-conceptualize the role of empirical investigations, the study will focus on the transitions between the experiences and processes students seek to understand, classroom investigations, evidence, and explanatory models as opportunities for sense-making, and how uncertainty can be built into these transitions. The project's underlying assumption is that carefully implementing these forms of uncertainty will help curriculum developers and teachers avoid the oversimplified investigations that are prevalent in K-8 classrooms that stand in stark contrast to authentic science learning and the recommendations of the Framework for K-12 Science Education (National Research Council, 2012). Accordingly, the project will seek to develop curriculum design guidelines, teacher tools, professional development supports, and four elaborated investigations, including sets of lessons, videos, and assessments that embed productive uncertainty for second and fifth graders and designed for use with linguistically, culturally, and socio-economically diverse students.

The hypothesis of this work is that if specific forms of scientific uncertainty are carefully selected, and if teachers can implement these forms of uncertainty, elementary students will have more robust opportunities to develop disciplinary practices and ideas in ways consistent with the Next Generation Science Standards (NGSS) (Lead States, 2013). Employing Design-Based Research, the three research questions will be: (1) What opportunities for sense-making do elementary school empirical investigations afford where we might strategically build uncertainty?; (2) How can we design learning environments where uncertainty in empirical investigations supports opportunities for learning?; and (3) In classrooms with sustained opportunities to engage with uncertainty in empirical investigations, what progress do students make in content understandings and the practices of argumentation, explanation, and investigation? The work will consist of three design cycles: Design Cycle 1 will involve two small groups of six teachers in adapting their curricula to incorporate uncertainty, then describe how students engage around uncertainty in empirical investigations. Design Cycle 2 will involve the same small groups in implementing and refining task structures, tools, and teacher instructional strategies. In Design Cycle 3, teachers and researchers will further refine lesson materials, assessments, and supports. The project will partner with one school district and engage in design research with groups of teachers to develop: (1) a research-based description, with exemplars of opportunities for student sense-making within empirical investigations at both early and upper elementary grades; (2) a set of design principles and tools that allow teachers to elicit and capitalize on sense-making about uncertainty in investigations; and (3) four elementary investigations elaborated to incorporate and exemplify the first two products above. These materials will be disseminated through a website, and established networks for supporting implementation of the NGSS. An advisory board will oversee project progress and conduct both formative and summative evaluation.

Integrating Chemistry and Earth Science

This project will design, develop, and test a new curriculum unit for high school chemistry courses that is organized around the question, "How does chemistry shape where I live?" The new unit will integrate relevant Earth science data, scientific practices, and key urban environmental research findings with the chemistry curriculum to gain insights into factors that support the approach to teaching and learning advocated by current science curriculum standards.

Award Number: 
1721163
Funding Period: 
Tue, 08/15/2017 to Wed, 07/31/2019
Full Description: 

This Integrating Chemistry and Earth science (ICE) project will design, develop, and test a new curriculum unit for high school chemistry courses that is organized around the question, "How does chemistry shape where I live?" The new unit will integrate relevant Earth science data, scientific practices, and key urban environmental research findings with the chemistry curriculum to gain insights into factors that support the approach to teaching and learning advocated by current science curriculum standards. The overarching goal of the project is to develop teacher capacity to teach and evaluate student abilities to use the practices of scientists and concepts from Earth science and chemistry to understand important phenomena in their immediate, familiar environments. The project has the potential to serve as a model for how to make cutting edge science directly accessible to all students. The project is a collaborative effort that engages scientists, science education researchers, curriculum developers, school curriculum and instruction leaders, and science teachers in the longer term challenge of infusing Earth science concepts and practices across the core high school science courses.

Current guidelines and standards for science education promote learning that engages students in three interrelated dimensions: disciplinary core ideas, scientific practices, and crosscutting ideas. This project is guided by the hypothesis that when provided sustained opportunities to engage in three-dimensional learning experiences, in an integrated Earth science and chemistry context, students will improve in their ability to demonstrate the coordination of disciplinary core ideas, scientific practices, and crosscutting concepts when solving problems and developing explanations related to scientific phenomena. This project will employ a design based research approach, and during the two development-enactment-analysis-and-redesign cycles, the project team will collect student assessment data, teacher interview data, observational data from lessons, teacher surveys, and reflective teacher logbooks. These collected data will provide information about how teachers implement the lessons, what students do during the lessons, and what students learn from them that will lead to better design and a better understanding of student learning. This information will be used to inform the modification of lessons from cycle to cycle, and to inform the professional development materials for teachers. The research agenda for the project is guided by the following questions: 1. What are the design features of ICE lessons that support teachers in enacting three-dimensional instruction within the context of their classroom? 2. What are the design features of embedded three-dimensional assessments that yield useful classroom data for teachers and researchers regarding their students' abilities to integrate core ideas, scientific practices, and crosscutting concepts? 3. What is the nature of student learning related to disciplinary core ideas, scientific practices, and crosscutting concepts that results from students' engagement in ICE lesson sets? 4. What differences emerge in student engagement and learning outcomes for ICE lessons that incorporate local phenomena or data sets as compared to lessons that do not? 5. What contextual factors (i.e., school context, administrative support, time constraints, etc.) influence teachers' implementation of three-dimensional instruction embedded within ICE lessons?


Project Videos

2019 STEM for All Video Showcase

Title: Integrating Chemistry and Earth Science (ICE)

Presenter(s): Alan Berkowitz, Vonceil Anderson, Bess Caplan, Kevin Garner, & Jonathon Grooms


BioGraph 2.0: Online Professional Development for High School Biology Teachers for Teaching and Learning About Complex Systems

This proposal will develop and test an open-access, online system of professional development for high school biology teachers in order to build pedagogical competencies for teaching about complex systems and to support the application of those competencies in high school biology classrooms.

Lead Organization(s): 
Award Number: 
1721003
Funding Period: 
Fri, 09/01/2017 to Sat, 08/31/2019
Full Description: 

This project develops and tests an open-access, online asynchronous system of professional development for high school biology teachers in order to build pedagogical competencies for teaching about complex systems and to support the application of those competencies in high school biology classrooms. The online teacher professional development (PD) is delivered through the edX open access platform.

This research follows on nearly two decades of NSF-funded projects to build curriculum using agent-based modeling tools and instructional practices based on what we know best about how students and teachers learn. The modeling platform, StarLogo Nova, enables students and teachers to visualize hidden aspects of complex systems phenomena, such as natural selection in evolutionary systems, that typically create challenges in conceptual understanding. The curriculum, called BioGraph (short form for graphical programming simulations in biology), is NGSS-aligned using experimentation, argumentation, and modeling as essential scientific practices in investigating five core areas of biology and complex systems. The curricular units take 3 days to complete and are designed to be easily integrated into the standard high school biology course. Teacher-vetted student activity packets and teacher guides provide scaffolded support for classroom implementation.

Our previous face-to-face PD model for learning how to teach with BioGraph materials revealed a number of important best practice characteristics that included working on teacher beliefs, providing just-in-time facilitation, and building a collaborative professional community. In the current project, we aim to construct opportunities for a wide range of teachers to participate in the PD (that was previously limited only to local teachers). Moving to an online asynchronous platform would enable anywhere, anytime access to high quality curriculum (widely understood to be barriers to engaging in impactful PD). However, research on online teacher PD is still in its relative infancy especially pertaining to computer-supported teaching and learning. Of particular interest in the literature is how to build an ongoing collaborative teacher learning community that shares knowledge and advances in their instruction together. Thus, our project aims to investigate this goal in addition to the curricular goals through a social capital online delivery structure that includes activities and scaffolds for building social ties, depth of interactions, access to expertise, and trust. This research will produce insights and guidelines that can be immediately incorporated into the emerging field of online PD, and online education in general.

Building Capacity to Retain Underrepresented Students in STEM Fields

This workshop provides minority serving institutions with an opportunity to engage in dialogue about effective ways to create, implement, and evaluate models of intervention that will advance knowledge about retaining underrepresented minorities in STEM fields. It will advance knowledge in life science and the biosciences for K-12 and undergraduate students attending local schools or eligible minority-serving institutions.

Lead Organization(s): 
Award Number: 
1741748
Funding Period: 
Mon, 05/01/2017 to Mon, 04/30/2018
Full Description: 

The NSF invests in a number of programs targeting underrepresented populations and institutions relative to its meeting its goals for broadening participation in STEM. This workshop provides minority serving institutions with an opportunity to engage in dialogue about effective ways to create, implement, and evaluate models of intervention that will advance knowledge about retaining underrepresented minorities in STEM fields. It will advance knowledge in life science and the biosciences for K-12 and undergraduate students attending local schools or eligible minority-serving institutions. The workshop will focus on assisting minority serving institutions with use of research designs, and review of best practices for intervention shown to be effective in helping underrepresented student cope with chronic stresses that interfere with their retention in STEM fields and careers. The target audience for the workshop will be the participating institutions and their undergraduate students, in partnership with local K-12 schools.

In collaboration with Quality Education for Minority and MERAssociates, Rutgers University Newark will provide a unique setting to convene more than 100 participants to attend the workshop. The participants will include deans and/or department chairs; STEM faculty; educational researchers, and institutional representatives such as Vice Presidents of Academic Affairs, Provosts, or other administrators. The participants will work in teams of 4-5 to address science research topics and activities related to curriculum development, teacher support, and student engagement. Outcomes from the workshops will provide insights about successful strategies, areas of future research, and awareness about the need for better intervention models that support underrepresented minority students in STEM.

Pages

Subscribe to Biology