Mathematics

Investigating the Presence of Mathematics and the Levels of Cognitively Demanding Mathematical Tasks in Integrated STEM Units

Effective K-12 integrated STEM education should reflect an intentional effort to adequately represent and facilitate each of its component disciplines in a meaningful way. However, most research in this space has been conducted within the context of science classrooms, ignoring mathematics. Also missing from the literature is research that examines the level of cognitive demand required from mathematical tasks present within integrated STEM lessons.

Author/Presenter

Elizabeth N. Forde

Latanya Robinson

Joshua A. Ellis

Emily A. Dare

Year
2023
Short Description

Effective K-12 integrated STEM education should reflect an intentional effort to adequately represent and facilitate each of its component disciplines in a meaningful way. However, most research in this space has been conducted within the context of science classrooms, ignoring mathematics. Also missing from the literature is research that examines the level of cognitive demand required from mathematical tasks present within integrated STEM lessons. In order to seek insight pertaining to this gap in the literature, we sought to better understand how science teachers use mathematics within K-12 integrated STEM instruction.

Investigating the Presence of Mathematics and the Levels of Cognitively Demanding Mathematical Tasks in Integrated STEM Units

Effective K-12 integrated STEM education should reflect an intentional effort to adequately represent and facilitate each of its component disciplines in a meaningful way. However, most research in this space has been conducted within the context of science classrooms, ignoring mathematics. Also missing from the literature is research that examines the level of cognitive demand required from mathematical tasks present within integrated STEM lessons.

Author/Presenter

Elizabeth N. Forde

Latanya Robinson

Joshua A. Ellis

Emily A. Dare

Year
2023
Short Description

Effective K-12 integrated STEM education should reflect an intentional effort to adequately represent and facilitate each of its component disciplines in a meaningful way. However, most research in this space has been conducted within the context of science classrooms, ignoring mathematics. Also missing from the literature is research that examines the level of cognitive demand required from mathematical tasks present within integrated STEM lessons. In order to seek insight pertaining to this gap in the literature, we sought to better understand how science teachers use mathematics within K-12 integrated STEM instruction.

Investigating the Presence of Mathematics and the Levels of Cognitively Demanding Mathematical Tasks in Integrated STEM Units

Effective K-12 integrated STEM education should reflect an intentional effort to adequately represent and facilitate each of its component disciplines in a meaningful way. However, most research in this space has been conducted within the context of science classrooms, ignoring mathematics. Also missing from the literature is research that examines the level of cognitive demand required from mathematical tasks present within integrated STEM lessons.

Author/Presenter

Elizabeth N. Forde

Latanya Robinson

Joshua A. Ellis

Emily A. Dare

Year
2023
Short Description

Effective K-12 integrated STEM education should reflect an intentional effort to adequately represent and facilitate each of its component disciplines in a meaningful way. However, most research in this space has been conducted within the context of science classrooms, ignoring mathematics. Also missing from the literature is research that examines the level of cognitive demand required from mathematical tasks present within integrated STEM lessons. In order to seek insight pertaining to this gap in the literature, we sought to better understand how science teachers use mathematics within K-12 integrated STEM instruction.

Professional Noticing as Student-Centered: Pre-service Teachers’ Attending to Students’ Mathematics in 360 Video

Teachers’ professional noticing has been described as transitioning from descriptions of general pedagogy to analysis of students’ mathematical procedures and conceptual reasoning. Such a shift is described as a transition towards more student-centered noticing. In the present study, we used screen recordings of pre-service teachers’ (PSTs) 360 video viewing to examine the relationship between where and what PSTs’ looked at and what they attended to in writing.

Author/Presenter
Karl W. Kosko

Maryam Zolfaghari

Jennifer L. Heisler

Lead Organization(s)
Year
2022
Short Description

Teachers’ professional noticing has been described as transitioning from descriptions of general pedagogy to analysis of students’ mathematical procedures and conceptual reasoning. Such a shift is described as a transition towards more student-centered noticing. In the present study, we used screen recordings of pre-service teachers’ (PSTs) 360 video viewing to examine the relationship between where and what PSTs’ looked at and what they attended to in writing.

Preservice Teachers’ Focus in 360 Videos: Understanding the Role of Presence, Ambisonic Audio, and Camera Placement

Immersive 360 videos are increasingly being used in pre-service teachers (PST) education. There is preliminary evidence that this technology may benefit future educators’ focus and attention to classroom settings and events. However, more analytical efforts are needed to better understand its potential impact on reported focus of attention (RFA) among future educators. This article addresses this gap by presenting the findings of a study on 360 videos that involved 92 PSTs.

Author/Presenter

Lead Organization(s)
Year
2022
Short Description

Immersive 360 videos are increasingly being used in pre-service teachers (PST) education. There is preliminary evidence that this technology may benefit future educators’ focus and attention to classroom settings and events. However, more analytical efforts are needed to better understand its potential impact on reported focus of attention (RFA) among future educators. This article addresses this gap by presenting the findings of a study on 360 videos that involved 92 PSTs.

Using the COVID-19 Pandemic to Create a Vision for XR-based Teacher Education Field Experiences

If there was a bright side to the COVID-19 pandemic, particularly related to education, it was the massive and rapid introduction of educational technologies to scaffold teaching and learning. Most notably, within teacher education, this included extended reality (XR) technologies to supplement or replace face-to-face field experiences. With the pandemic turning endemic, and with preK-12 schools returning to traditional modalities, there is a danger that the successes of virtual field experiences may be lost.

Author/Presenter

Richard E. Ferdig

Karl W. Kosko

Enrico Gandolfi

Lead Organization(s)
Year
2022
Short Description

This article presents a vision for 2025 to implement low cost and effective extended reality (XR) technologies to supplement teacher education field experiences, regardless of if and when another global or local crisis occurs (e.g., pandemic, war, weather). In doing so, empirical and theoretical research is presented that argues for teacher educators to seek out and employ more immersive representations of practice that take advantage of the perceptual capacity of XR.

Young Philosophers: Fifth-Grade Students Animating the Concept of Space

In many schools across the world, students experience mathematical concepts as ideas empty of wisdom and possibility. In this paper the authors analyze a philosophical conversation in which fifth-grade students were caught up in the animacy of the concept of space. Challenging the common view of mathematics as dealing with absolute truths and certainty, these students, the materials, and the concept itself formed dynamic assemblages that, through movement and the senses reanimated philosophical considerations regarding the concept of space.

Author/Presenter

Higinio Dominguez

Sofía Abreu

Melvin Peralta

Lead Organization(s)
Year
2023
Short Description

In many schools across the world, students experience mathematical concepts as ideas empty of wisdom and possibility. In this paper the authors analyze a philosophical conversation in which fifth-grade students were caught up in the animacy of the concept of space. Challenging the common view of mathematics as dealing with absolute truths and certainty, these students, the materials, and the concept itself formed dynamic assemblages that, through movement and the senses reanimated philosophical considerations regarding the concept of space.

Vygotskian Hybridizing of Motion and Mapping: Learning About Geometric Transformations in Block-based Programming Environments

Research on geometric transformations suggests that early learners possess intuitive understandings grounded in motion metaphors, transitioning to mappings. The processes through which students transition between these two conceptions are not fully understood. We propose that Vygotskian hybridizing (related to Vygotsky’s articulation of everyday and scientific concepts) may provide a lens for thinking about the relationship between these conceptions.

Author/Presenter

Jesús E. Hernández-Zavaleta

Corey Brady

Sandra Becker

Douglas B. Clark

Lead Organization(s)
Year
2023
Short Description

Research on geometric transformations suggests that early learners possess intuitive understandings grounded in motion metaphors, transitioning to mappings. The processes through which students transition between these two conceptions are not fully understood. We propose that Vygotskian hybridizing (related to Vygotsky’s articulation of everyday and scientific concepts) may provide a lens for thinking about the relationship between these conceptions.

Unpacking Response Process Issues Encountered When Developing a Mathematics Teachers’ Pedagogical Content Knowledge (PCK) Assessment

It is essential for items in assessments of mathematics’ teacher knowledge to evoke the desired response processes – to be interpreted and responded to by teachers as intended by item developers. In this study, we sought to unpack evidence that middle school mathematics teachers were not consistently interacting as intended with constructed response (i.e. open-ended) items designed to assess their pedagogical content knowledge (PCK).

Author/Presenter

Martha L. Epstein

Hamza Malik

Kun Wang

Chandra H. Orrill

Year
2023
Short Description

It is essential for items in assessments of mathematics’ teacher knowledge to evoke the desired response processes – to be interpreted and responded to by teachers as intended by item developers. In this study, we sought to unpack evidence that middle school mathematics teachers were not consistently interacting as intended with constructed response (i.e. open-ended) items designed to assess their pedagogical content knowledge (PCK).

Mathematics and Science Teacher Educators' Use of Representations of Practice: A Mixed Methods Study

This study sought to explore math and science teacher educators' use of various media to represent practice within methods courses. There is little understanding of why certain media is used over other representations and the rationale for these choices. Specifically, the study focused on the prevalence and familiarity of teacher educators with comics and animations, standard videos, and 360 videos. This mixed methods study utilized a survey and interviews to ascertain math and science teacher educators' level of familiarity and perceived usefulness of representations of practice.

Author/Presenter

Christine K. Austin

Karl W. Kosko

Jennifer L. Heisler

Lead Organization(s)
Year
2023
Short Description

This study sought to explore math and science teacher educators' use of various media to represent practice within methods courses. There is little understanding of why certain media is used over other representations and the rationale for these choices. Specifically, the study focused on the prevalence and familiarity of teacher educators with comics and animations, standard videos, and 360 videos. This mixed methods study utilized a survey and interviews to ascertain math and science teacher educators' level of familiarity and perceived usefulness of representations of practice.