Mathematics

Preparing for a Data-Rich World: Civic Statistics Across the Curriculum

Civic Statistics by its nature is highly interdisciplinary. From a cross-curricular perspective, teaching and learning Civic Statistics faces specific challenges related to the preparation of teachers and the design of instruction. This chapter presents examples of how Civic Statistics resources and concepts can be used in different courses and subject areas. Because topical issues and current data are central to these resources, we recognise that the original ProCivicStat resources will become outdated in time.

Author/Presenter

Joachim Engel

Josephine Louie

Year
2023
Short Description

Civic Statistics by its nature is highly interdisciplinary. From a cross-curricular perspective, teaching and learning Civic Statistics faces specific challenges related to the preparation of teachers and the design of instruction. This chapter presents examples of how Civic Statistics resources and concepts can be used in different courses and subject areas.

Advancing Social Justice Learning Through Data Literacy

Students need “critical data literacy” skills to help make sense of the multitude of information available to them, especially as it relates to high-stakes issues of social justice. The authors describe two curriculum modules they developed—one on income equality, one on immigration—that help students learn to analyze data in order to shed light on complex social issues and evaluate claims about those issues.

Author/Presenter
Josephine Louie

Emily Fagan

Jennifer Stiles

Soma Roy

Beth Chance

Year
2023
Short Description

Students need “critical data literacy” skills to help make sense of the multitude of information available to them, especially as it relates to high-stakes issues of social justice. The authors describe two curriculum modules they developed—one on income equality, one on immigration—that help students learn to analyze data in order to shed light on complex social issues and evaluate claims about those issues.

Flip It: An Exploratory (Versus Explanatory) Sequential Mixed Methods Design Using Delphi and Differential Item Functioning to Evaluate Item Bias

The Delphi method has been adapted to inform item refinements in educational and psychological assessment development. An explanatory sequential mixed methods design using Delphi is a common approach to gain experts' insight into why items might have exhibited differential item functioning (DIF) for a sub-group, indicating potential item bias. Use of Delphi before quantitative field testing to screen for potential sources leading to item bias is lacking in the literature.

Author/Presenter
Kristin L.K. Koskey
Toni A. May
Yiyun “Kate” Fan
Dara Bright
Gregory Stone
Gabriel Matney
Jonathan D. Bostic
Year
2023
Short Description

The Delphi method has been adapted to inform item refinements in educational and psychological assessment development. An explanatory sequential mixed methods design using Delphi is a common approach to gain experts' insight into why items might have exhibited differential item functioning (DIF) for a sub-group, indicating potential item bias. Use of Delphi before quantitative field testing to screen for potential sources leading to item bias is lacking in the literature. An exploratory sequential design is illustrated as an additional approach using a Delphi technique in Phase I and Rasch DIF analyses in Phase II. We introduce the 2 × 2 Concordance Integration Typology as a systematic way to examine agreement and disagreement across the qualitative and quantitative findings using a concordance joint display table.

Flip It: An Exploratory (Versus Explanatory) Sequential Mixed Methods Design Using Delphi and Differential Item Functioning to Evaluate Item Bias

The Delphi method has been adapted to inform item refinements in educational and psychological assessment development. An explanatory sequential mixed methods design using Delphi is a common approach to gain experts' insight into why items might have exhibited differential item functioning (DIF) for a sub-group, indicating potential item bias. Use of Delphi before quantitative field testing to screen for potential sources leading to item bias is lacking in the literature.

Author/Presenter
Kristin L.K. Koskey
Toni A. May
Yiyun “Kate” Fan
Dara Bright
Gregory Stone
Gabriel Matney
Jonathan D. Bostic
Year
2023
Short Description

The Delphi method has been adapted to inform item refinements in educational and psychological assessment development. An explanatory sequential mixed methods design using Delphi is a common approach to gain experts' insight into why items might have exhibited differential item functioning (DIF) for a sub-group, indicating potential item bias. Use of Delphi before quantitative field testing to screen for potential sources leading to item bias is lacking in the literature. An exploratory sequential design is illustrated as an additional approach using a Delphi technique in Phase I and Rasch DIF analyses in Phase II. We introduce the 2 × 2 Concordance Integration Typology as a systematic way to examine agreement and disagreement across the qualitative and quantitative findings using a concordance joint display table.

Examining the Influence of COVID-19 on Elementary Mathematics Standardized Test Scores in a Rural Ohio School District

In the United States, national and state standardized assessments have become a metric for measuring student learning and high-quality learning environments. As the COVID-19 pandemic offered a multitude of learning modalities (e.g., hybrid, socially distanced face-to-face instruction, virtual environment), it becomes critical to examine how this learning disruption influenced elementary mathematic performance.

Author/Presenter

Dara Bright

Yiyun “Kate” Fan

Chris Fornaro

Kristin L. K. Koskey

Toni A. May

Jonathan D. Bostic

Dolores Swineford

Year
2022
Short Description

In the United States, national and state standardized assessments have become a metric for measuring student learning and high-quality learning environments. As the COVID-19 pandemic offered a multitude of learning modalities (e.g., hybrid, socially distanced face-to-face instruction, virtual environment), it becomes critical to examine how this learning disruption influenced elementary mathematic performance. This study tested for

differences in mathematics performance on fourth grade standardized tests before and during COVID-19 in a case study of a rural Ohio school district using the Measure of Academic Progress (MAP) mathematics test.

Examining the Influence of COVID-19 on Elementary Mathematics Standardized Test Scores in a Rural Ohio School District

In the United States, national and state standardized assessments have become a metric for measuring student learning and high-quality learning environments. As the COVID-19 pandemic offered a multitude of learning modalities (e.g., hybrid, socially distanced face-to-face instruction, virtual environment), it becomes critical to examine how this learning disruption influenced elementary mathematic performance.

Author/Presenter

Dara Bright

Yiyun “Kate” Fan

Chris Fornaro

Kristin L. K. Koskey

Toni A. May

Jonathan D. Bostic

Dolores Swineford

Year
2022
Short Description

In the United States, national and state standardized assessments have become a metric for measuring student learning and high-quality learning environments. As the COVID-19 pandemic offered a multitude of learning modalities (e.g., hybrid, socially distanced face-to-face instruction, virtual environment), it becomes critical to examine how this learning disruption influenced elementary mathematic performance. This study tested for

differences in mathematics performance on fourth grade standardized tests before and during COVID-19 in a case study of a rural Ohio school district using the Measure of Academic Progress (MAP) mathematics test.

Tackling Tangential Student Contributions

Do your students ever share ideas that are only peripherally related to the discussion you are having? We discuss ways to minimize and deal with such contributions.

Peterson, B. E., Stockero, S. L., Leatham, K. R., & Van Zoest, L. R. (2022). Tackling tangential student contributions. Mathematics Teacher: Learning and Teaching PK-12, 115(9), 618-624.

Author/Presenter

Blake E. Peterson

Year
2022
Short Description

Do your students ever share ideas that are only peripherally related to the discussion you are having? We discuss ways to minimize and deal with such contributions.

Tackling Tangential Student Contributions

Do your students ever share ideas that are only peripherally related to the discussion you are having? We discuss ways to minimize and deal with such contributions.

Peterson, B. E., Stockero, S. L., Leatham, K. R., & Van Zoest, L. R. (2022). Tackling tangential student contributions. Mathematics Teacher: Learning and Teaching PK-12, 115(9), 618-624.

Author/Presenter

Blake E. Peterson

Year
2022
Short Description

Do your students ever share ideas that are only peripherally related to the discussion you are having? We discuss ways to minimize and deal with such contributions.

Tackling Tangential Student Contributions

Do your students ever share ideas that are only peripherally related to the discussion you are having? We discuss ways to minimize and deal with such contributions.

Peterson, B. E., Stockero, S. L., Leatham, K. R., & Van Zoest, L. R. (2022). Tackling tangential student contributions. Mathematics Teacher: Learning and Teaching PK-12, 115(9), 618-624.

Author/Presenter

Blake E. Peterson

Year
2022
Short Description

Do your students ever share ideas that are only peripherally related to the discussion you are having? We discuss ways to minimize and deal with such contributions.

The Potential of Digital Collaborative Environments for Problem-based Mathematics Curriculum

In this paper, we present an overview of the design research used to develop a digital collaborative environment with an embedded problem-based curriculum. We then discuss the student and teacher features of the environment that promote inquiry-based learning and teaching.

Author/Presenter

Alden J. Edson

Elizabeth Difanis Phillips

Lead Organization(s)
Year
2022
Short Description

In this paper, we present an overview of the design research used to develop a digital collaborative environment with an embedded problem-based curriculum. We then discuss the student and teacher features of the environment that promote inquiry-based learning and teaching.