Environmental Science

Scientific Communities of Practice: K–12 Outreach Model Around Organism Responses to Repeated Hurricane Disturbances

Collaboration between ecologists and learning scientists can give rise to powerful models for scientific outreach within ecology. This paper presents a process by which learning scientists and ecologists codesigned a science curriculum that invites students to join an ecological community of practice. In the Journey to El Yunque middle school science curriculum, students engage with simulation models generated from data gathered by Luquillo Long Term Ecological Research (LUQ LTER) scientists.

Author/Presenter

Kathleen M. Easley

Jess K. Zimmerman

Steven McGee

Randi McGee-Tekula

Lead Organization(s)
Year
2023
Short Description

Collaboration between ecologists and learning scientists can give rise to powerful models for scientific outreach within ecology. This paper presents a process by which learning scientists and ecologists codesigned a science curriculum that invites students to join an ecological community of practice.

Why Is Engineering Design Important for All Learners?

Engineering design systematically identifies needs, wants, and problems and then devises solutions to address them. A central component of our work is guiding students in the engineered design of solutions to local environmental problems.

Songer, N. B. (2023). Why is engineering design important for all learners?. Open Access Government April 2023, pp.300-301. https://doi.org/10.56367/OAG-038-10193

Author/Presenter

Nancy Butler Songer

Lead Organization(s)
Year
2023
Short Description

Engineering design systematically identifies needs, wants, and problems and then devises solutions to address them. A central component of our work is guiding students in the engineered design of solutions to local environmental problems.

Open Innovation Challenge to Mitigate Global Warming

Puttick, G., Drayton, B., & Gasca, S. (2023). Open innovation challenge to mitigate global warming. Connected Science Learning, 5(5).

Author/Presenter

Gillian M. Puttick

Brian Drayton

Santiago Gasca

Lead Organization(s)
Year
2023
Short Description

Open innovation challenge to mitigate global warming.

Innovate to Mitigate: Teacher Role in a Student Competition

The Innovate to Mitigate (I2M) project poses challenges for secondary-school students to design feasible, innovative strategies that mitigate CO2 emissions and thus global warming. Design is informed by research on problem-based learning, pedagogy for which poses demands on teachers. This paper presents preliminary evidence about how I2M teachers supported student teams to engage in science and engineering practices.

Author/Presenter

Gillian Puttick

Brian Drayton

Santiago Gasca

Lead Organization(s)
Year
2023
Short Description

The Innovate to Mitigate (I2M) project poses challenges for secondary-school students to design feasible, innovative strategies that mitigate CO2 emissions and thus global warming. Design is informed by research on problem-based learning, pedagogy for which poses demands on teachers. This paper presents preliminary evidence about how I2M teachers supported student teams to engage in science and engineering practices.

Innovate to Mitigate: Teacher Role in a Student Competition

The Innovate to Mitigate (I2M) project poses challenges for secondary-school students to design feasible, innovative strategies that mitigate CO2 emissions and thus global warming. Design is informed by research on problem-based learning, pedagogy for which poses demands on teachers. This paper presents preliminary evidence about how I2M teachers supported student teams to engage in science and engineering practices.

Author/Presenter

Gillian Puttick

Brian Drayton

Santiago Gasca

Lead Organization(s)
Year
2023
Short Description

The Innovate to Mitigate (I2M) project poses challenges for secondary-school students to design feasible, innovative strategies that mitigate CO2 emissions and thus global warming. Design is informed by research on problem-based learning, pedagogy for which poses demands on teachers. This paper presents preliminary evidence about how I2M teachers supported student teams to engage in science and engineering practices.

Teachers’ Use and Adaptation of a Model-based Climate Curriculum: A Three-Year Longitudinal Study

Foregrounding climate education in formal science learning environments provides students with opportunities to develop critical climate-related knowledge and skills. However, research has shown many challenges to teaching and learning about Earth’s climate and global climate change (GCC). This longitudinal study aims to establish how secondary science teachers, over time, implement model-based climate curricula in support of students’ climate and GCC education by utilizing EzGCM. The model (EzGCM) is a data-driven, computer-based climate modeling tool use to explore global climate data.

Author/Presenter

Kimberly Carroll Steward

David Gosselin

Devarati Bhattacharya

Mark Chandler

Cory T. Forbes

Year
2024
Short Description

Foregrounding climate education in formal science learning environments provides students with opportunities to develop critical climate-related knowledge and skills. However, research has shown many challenges to teaching and learning about Earth’s climate and global climate change (GCC). This longitudinal study aims to establish how secondary science teachers, over time, implement model-based climate curricula in support of students’ climate and GCC education by utilizing EzGCM. The model (EzGCM) is a data-driven, computer-based climate modeling tool use to explore global climate data.

Teachers’ Use and Adaptation of a Model-based Climate Curriculum: A Three-Year Longitudinal Study

Foregrounding climate education in formal science learning environments provides students with opportunities to develop critical climate-related knowledge and skills. However, research has shown many challenges to teaching and learning about Earth’s climate and global climate change (GCC). This longitudinal study aims to establish how secondary science teachers, over time, implement model-based climate curricula in support of students’ climate and GCC education by utilizing EzGCM. The model (EzGCM) is a data-driven, computer-based climate modeling tool use to explore global climate data.

Author/Presenter

Kimberly Carroll Steward

David Gosselin

Devarati Bhattacharya

Mark Chandler

Cory T. Forbes

Year
2024
Short Description

Foregrounding climate education in formal science learning environments provides students with opportunities to develop critical climate-related knowledge and skills. However, research has shown many challenges to teaching and learning about Earth’s climate and global climate change (GCC). This longitudinal study aims to establish how secondary science teachers, over time, implement model-based climate curricula in support of students’ climate and GCC education by utilizing EzGCM. The model (EzGCM) is a data-driven, computer-based climate modeling tool use to explore global climate data.

Innovate to Mitigate: Microgenesis of Student Design and Rationale in a Crowdsourcing Competition to Mitigate Global Warming

The Innovate to Mitigate project adapts crowdsourcing to support project-based STEM education, posing design challenges for secondary-school students. Students are charged with designing feasible innovative strategies to mitigate CO2 emissions and thus global warming. The paper draws on data from 3 project teams. The paper presents evidence that a web-mediated community of practice supports STEM learning of concepts and STEM practices and examines conditions under which the environment can enable an account of microgenesis of that learning.

Author/Presenter

Brian Drayton

Gillian Puttick

Santiago Gasca

Lead Organization(s)
Year
2022
Short Description

The Innovate to Mitigate project adapts crowdsourcing to support project-based STEM education, posing design challenges for secondary-school students. Students are charged with designing feasible innovative strategies to mitigate CO2 emissions and thus global warming. The paper draws on data from 3 project teams. The paper presents evidence that a web-mediated community of practice supports STEM learning of concepts and STEM practices and examines conditions under which the environment can enable an account of microgenesis of that learning.

Eco-Solutioning: The Design and Evaluation of a Curricular Unit to Foster Students’ Creation of Solutions to Address Local Socio-Scientific Issues

The global pandemic and climate change have led to unprecedented environmental, social, and economic challenges with interdisciplinary STEM foundations. Even as STEM learning has never been more important, very few pre-college programs prepare students to address these challenges by emphasizing socio-scientific issue (SSI) problem solving and the engineering design of solutions to address local phenomena.

Author/Presenter

Nancy Butler Songer

Guillermo D. Ibarrola Recalde

Lead Organization(s)
Year
2021
Short Description

The global pandemic and climate change have led to unprecedented environmental, social, and economic challenges with interdisciplinary STEM foundations. Even as STEM learning has never been more important, very few pre-college programs prepare students to address these challenges by emphasizing socio-scientific issue (SSI) problem solving and the engineering design of solutions to address local phenomena. The paper discusses the design and evaluation of a pre-college, SSI curricular unit where students expand their learning by creating solutions to increase biodiversity within local urban neighborhoods.

Theoretical Diversity and Inclusivity in Science and Environmental Education Research: A Way Forward

As distinct communities of practice (COP), science education research (SER) and environmental education research (EER) have both matured a great deal in recent decades, coming to include a greater diversity of theoretical perspectives, worldviews, and researcher and participant voices. In this paper, we present a view of theoretical inclusivity that promises a rich, robust research landscape for both EER and SER through the deliberate inclusion of non-Western theories.

Author/Presenter

Roberta Howard Hunter

Gail Richmond

Lead Organization(s)
Year
2022
Short Description

As distinct communities of practice (COP), science education research (SER) and environmental education research (EER) have both matured a great deal in recent decades, coming to include a greater diversity of theoretical perspectives, worldviews, and researcher and participant voices. In this paper, we present a view of theoretical inclusivity that promises a rich, robust research landscape for both EER and SER through the deliberate inclusion of non-Western theories.