Website

Leveling Up: Supporting and Measuring High School STEM Knowledge Building in Social Digital Games

This project designs, develops and tests a digital gaming environment for high school students that fosters and measures science learning within alternate reality games about saving Earth's ecosystems. Players work together to solve scientific challenges using a broad range of tools including a centralized web-based gaming site and social networking tools, along with handheld smart-phones, and an avatar-based massively multiplayer online environment. The game requires players to contribute to a scientific knowledge building community.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1119144
Funding Period: 
Fri, 07/01/2011 to Mon, 06/30/2014
Project Evaluator: 
New Knowledge Organization
Full Description: 

This project designs, develops and tests a digital gaming environment for high school students that fosters and measures science learning within alternate reality games about saving Earth's ecosystems. Players work together to solve scientific challenges using a broad range of tools including a centralized web-based gaming site and social networking tools, along with handheld smart-phones, and an avatar-based massively multiplayer online environment (MMO). EdGE at TERC joins with GameGurus, high school teachers and assessment specialists to develop Leveling Up. The game requires players to contribute to a scientific knowledge building community; and players rate each other's contributions for their value to the communities' learning and decision-making in solving the challenge. Designers also work with high-school teachers to develop bridge activities that leverage science learning in games for use in formal education. Overall, the project goal is to understand the potential of the gaming environment as a direct intervention and as a catalyst to transform and measure high school STEM learning.

The research on Leveling Up compares the science learning measured within social digital games to class-based assessments of similar content and skills and explains the results using data from design documents, participant observations, surveys, interviews and student work. Formative research and iterative design with a cohort of with 15 testbed classes (grades 10-12) result in a set of assessments that have been validated in terms of scientific constructs and a set of common equivalent curriculum and assessments for implementation studies. In the third year of the project, researchers study 12 treatment classes and 3 control classes to compare students' advancement in the game to their gains on classroom assessments. In addition, half of the testbed classes use the classroom bridge activities and half do not, yielding samples of 180 students for each treatment and 90 students for the control sample. Researchers use multilevel models to examine the impact of the Leveling Up game play and bridge activities on high-school students' science knowledge. Independent evaluators (ILI) validate the interpretation of findings from the formative and implementation research.

Leveling Up is a fundamental first step for the STEM education field to understand how the pervasive social media emerging in today's society, including the phenomena of social digital gaming, can be leveraged to create exciting and productive STEM learning environments for the future. These technologies and knowledge building processes are critical for building a workforce of tomorrow that is scientifically, technologically, and data literate and also embody the inquiry and collaboration skills to contribute to productive and informed decisions about Earth's ecosystems and other important scientific and societal issues of our times. The project, Leveling Up, results in an ongoing STEM gaming environment for the public as well as a model for high school STEM assessment that may be used in other social digital games. Finally, Leveling Up also contributes a model for activities that bridge scientific inquiry occurring in social digital games with skills and content taught in high school STEM classes.

Further Development and Testing of the Target Inquiry Model for Middle and High School Science Teacher Professional Development (Collaborative Research: Herrington)

This project scales and further tests the Target Inquiry professional development model. The scale-up and further testing would involve adding physics, biology and geology at Grand Valley State University, and implementing the program at Miami University with chemistry teachers. The project is also producing a website of instructional materials for middle and secondary science.

Partner Organization(s): 
Award Number: 
1118658
Funding Period: 
Mon, 08/15/2011 to Wed, 07/31/2013
Full Description: 

This project scales and further tests the Target Inquiry (TI) professional development model. The TI model involves teachers in three core experiences: 1) a research experience for teachers (RET), 2) materials adaptation (MA), and 3) an action research (AR) project. The original program was implemented with high school chemistry teachers at Grand Valley State University (GVSU), and was shown to result in significant increases, with large effect sizes, in teachers' understanding of science inquiry and quality of instruction, and in science achievement of those teachers' students. The scale-up and further testing would involve adding physics, biology and geology at GVSU, and implementing the program at Miami University (MU) with chemistry teachers. Three research questions will be studied:

1) How do the three TI core experiences influence in-service high school science teachers' (i) understanding of the nature of science; (ii) attitudes and beliefs about inquiry instruction; and (iii) classroom instructional methods in two new applications of the TI model?

2) How does teacher participation in TI affect students' process skills (scientific reasoning and metacognition) and conceptual understanding of science in two new applications of the TI model?

3) What are the challenges and solutions related to implementing TI in science disciplines beyond chemistry and in other regions?

The research design is quasi-experimental and longitudinal, incorporating implementation with research, and using quantitative and qualitative methods blended in a design research framework. A total of 54 middle and high school science teachers are being recruited for the study. The TI group is completing the TI program (N = 27; 15 at GVSU; 12 at MU) while the comparison group (same sizes and locations) is not. The comparison group is matched according to individual characteristics and school demographics. All teachers are being studied, along with their students, for 4 years (pre-program, post-RET, post-MA, post-AR/post-program). TI teachers are taking 15 credits of graduate level science courses over three years, including summers. Courses include a graduate seminar focused on preparing for the research experience, the research experience in a faculty member's science lab during the summer, application of research to teaching, action research project development, adaptation and evaluation of inquiry-focused curricula, and interpretation and analysis of classroom data from action research. Consistent feedback from professional development providers, other teachers, and evaluation, including comparison with the previous implementation, contributes to a design-based approach. Teacher factors being studied include beliefs about the nature of science, inquiry teaching knowledge and beliefs, and quality of inquiry instruction. Student factors being studied include scientific reasoning; metacognition, self-efficacy, and learning processes in science; and content knowledge and conceptual understanding. Only established quantitative and qualitative instruments are being used. Quantitative analysis includes between-group comparisons by year on post-tests, with pre-tests as covariates, and multi-level models with students nested within teachers, and teachers within sites, with the teacher level as the primary unit of change. Trends over time between the treatment and comparison groups are being examined. The evaluation is using a combination of pre/post causal comparative quantitative measures and relevant qualitative data from project leaders and participants, as well as from the comparison group, to provide formative and summative evaluation input.

Outcomes of the project include documentation and understanding of the impacts on science teachers' instruction and student outcomes of research experiences for teachers when they are supported by materials adaptation and action research, and an understanding of what it takes to scale the model to different science disciplines and a different site. The project is also producing a website of instructional materials for middle and secondary science.

Expanding and Sustaining Understanding Evolution

This project will (1) identify the characteristics and needs of college-level target learners and their instructors with respect to evolution, (2) articulate the components for expanding the Understanding Evolution (UE) site to include an Undergraduate Lounge in which students and instructors will be able to access a variety of evolution resources, (3) develop a strategic plan for increasing awareness of UE, and (4) develop a strategic plan for maintenance and continued growth of the site.

Award Number: 
0841757
Funding Period: 
Wed, 10/15/2008 to Thu, 09/30/2010
Full Description: 

The University of California Museum of Paleontology (UCMP) will bring together an experienced group of evolution educators in order to inform the development and maintenance of an effective resource for improving evolution education at the college level. This effort falls under the umbrella of UCMP's highly successful Understanding Evolution (UE) project (http://evolution.berkeley.edu), which currently receives over one million page requests per month during the school year. UE was originally designed around the needs of the K-12 education community; however, increasingly, the site is being used by the undergraduate education community. UCMP intends to embark on an effort to enhance the utility of the UE site for that population, increase awareness of the site at the college level, and secure the project's future so that it can continue to serve K-16 teachers and students. To inform and guide these efforts, UCMP proposes to establish and convene a UE Advisory Board, which will be charged with helping to: (1) identify the characteristics and needs of college-level target learners and their instructors with respect to evolution, (2) articulate the recommended components for expanding the UE site to include an Undergraduate Lounge in which students and their instructors will be able to access a variety of resources for increasing understanding of evolution, (3) develop a strategic plan for increasing awareness of UE within the undergraduate education community, and (4) develop a strategic plan for maintenance and continued growth of the UE site.

Confronting the Challenges of Climate Literacy (Collaborative Research: McNeal)

This project is developing inquiry-based, lab-focused, online Climate Change EarthLabs modules as a context for ongoing research into how high school students grasp change over time in the Earth System on multiple time scales. This project examines the challenges to high-school students' understanding of Earth's complex systems, operating over various temporal and spatial scales, and by developing research-based insights into effective educational tools and approaches that support learning about climate change and Earth Systems Science.

Award Number: 
1443024
Funding Period: 
Wed, 09/15/2010 to Sat, 10/31/2015
Full Description: 

This project is developing three inquiry-based, lab-focused, online Climate Change EarthLabs modules as a context for ongoing research into how high school students grasp change over time in the Earth System on multiple time scales. Climate literacy has emerged as an important domain of education. Yet it presents real challenges in cognition, perception, and pedagogy, especially in understanding Earth as a dynamic system operating at local to global spatial scales over multiple time scales. This research project confronts these issues by examining the challenges to high-school students' understanding of Earth's complex systems, operating over various temporal and spatial scales, and by developing research-based insights into effective educational tools and approaches that support learning about climate change and Earth Systems Science. The project is a collaborative effort among science educators at TERC, Mississippi State University, and The University of Texas at Austin.

The project uses a backward-design methodology to identify an integrated set of science learning goals and research questions to inform module development. Development and review of draft materials will be followed by a pilot implementation and then two rounds of teacher professional development, classroom implementation, and research in Texas and Mississippi. Research findings from the multiple rounds of implementation will allow an iterative process for refining the modules, the professional development materials, and the research program.

This project focuses on the design, development, and testing of innovative climate change curriculum materials and teacher professional development for Earth Systems science instruction. The materials will be tested in states with teachers in need of Earth Systems Science training and with significant numbers of low income and minority students who are likely to be hard hit by impending climate change. The research will shed light on the challenges of education for climate literacy.

Formerly Award # 1019703.

Confronting the Challenges of Climate Literacy (Collaborative Research: Ledley)

This project is developing inquiry-based, lab-focused, online Climate Change EarthLabs modules as a context for ongoing research into how high school students grasp change over time in the Earth System on multiple time scales. This project examines the challenges to high-school students' understanding of Earth's complex systems, operating over various temporal and spatial scales, and by developing research-based insights into effective educational tools and approaches that support learning about climate change and Earth Systems Science.

Project Email: 
Award Number: 
1019721
Funding Period: 
Wed, 09/15/2010 to Fri, 08/31/2012
Project Evaluator: 
Susan Buhr
Full Description: 

This project is developing three inquiry-based, lab-focused, online Climate Change EarthLabs modules (focus is on the Cryosphere, Climate and Weather, and the Carbon Cycle) as a context for ongoing research into how high school students grasp change over time in the Earth System on multiple time scales. Climate literacy has emerged as an important domain of education. Yet it presents real challenges in cognition, perception, and pedagogy, especially in understanding Earth as a dynamic system operating at local to global spatial scales over multiple time scales. This research project confronts these issues by examining the challenges to high-school students' understanding of Earth's complex systems, operating over various temporal and spatial scales, and by developing research-based insights into effective educational tools and approaches that support learning about climate change and Earth Systems Science. The project is a collaborative effort among science educators at TERC, Mississippi State University, and The University of Texas at Austin.

The project uses a backward-design methodology to identify an integrated set of science learning goals and research questions to inform module development. Development and review of draft materials will be followed by a pilot implementation and then two rounds of teacher professional development, classroom implementation, and research in Texas and Mississippi. Research findings from the multiple rounds of implementation will allow an iterative process for refining the modules, the professional development materials, and the research program.

This project focuses on the design, development, and testing of innovative climate change curriculum materials and teacher professional development for Earth Systems science instruction. The materials will be tested in states with teachers in need of Earth Systems Science training and with significant numbers of low income and minority students who are likely to be hard hit by impending climate change. The research will shed light on the challenges of education for climate literacy.

Efficacy Study of Metropolitan Denver's Urban Advantage Program: A Project to Improve Scientific Literacy Among Urban Middle School Students

This is an efficacy study to determine if partnerships among formal and informal organizations demonstrate an appropriate infrastructure for improving science literacy among urban middle school science students. The study aims to answer the following questions: How does participation in the program affect students' science knowledge, skills, and attitudes toward science; teachers' science knowledge, skills, and abilities; and families engagement in and support for their children's science learning and aspirations?

Award Number: 
1020386
Funding Period: 
Wed, 09/15/2010 to Wed, 08/31/2011
Project Evaluator: 
Maggie Miller
Full Description: 

This is an efficacy study through which the Denver Museum of Nature and Science, the Denver Zoo, the Denver Botanic Gardens, and three of Denver's urban school districts join efforts to determine if partnerships among formal and informal organizations demonstrate an appropriate infrastructure for improving science literacy among urban middle school science students. The Metropolitan Denver Urban Advantage (UA Denver) program is used for this purpose. This program consists of three design elements: (a) student-driven investigations, (b) STEM-related content, and (c) alignment of schools and informal science education institutions; and six major components: (a) professional development for teachers, (b) classroom materials and resources, (c) access to science-rich organizations, (d) outreach to families, (e) capacity building and sustainability, and (e) program assessment and student learning. Three research questions guide the study: (1) How does the participation in the program affect students' science knowledge, skills, and attitudes toward science relative to comparison groups of students? (2) How does the participation in the program affect teachers' science knowledge, skills, and abilities relative to comparison groups of teachers? and (3) How do families' participation in the program affect their engagement in and support for their children's science learning and aspirations relative to comparison families?

The study's guiding hypothesis is that the UA Denver program should improve science literacy in urban middle school students measured by (a) students' increased understanding of science, as reflected in their science investigations or "exit projects"; (b) teachers' increased understanding of science and their ability to support students in their exit projects, as documented by classroom observations, observations of professional development activities, and surveys; and (c) school groups' and families' increased visits to participating science-based institutions, through surveys. The study employs an experimental research design. Schools are randomly assigned to either intervention or comparison groups and classrooms will be the units of analysis. Power analysis recommended a sample of 18 intervention and 18 comparison middle schools, with approximately 72 seventh grade science teachers, over 5,000 students, and 12,000 individual parents in order to detect differences among intervention and comparison groups. To answer the three research questions, data gathering strategies include: (a) students' standardized test scores from the Colorado Student Assessment Program, (b) students' pre-post science learning assessment using the Northwest Evaluation Association's Measures for Academic Progress (science), (c) students' pre-post science aspirations and goals using the Modified Attitude Toward Science Inventory, (d) teachers' fidelity of implementation using the Teaching Science as Inquiry instrument, and (e) classroom interactions using the Science Teacher Inquiry Rubric, and the Reformed Teaching Observation protocol. To interpret the main three levels of data (students, nested in teachers, nested within schools), hierarchical linear modeling (HLM), including HLM6 application, are utilized. An advisory board, including experts in research methodologies, science, informal science education, assessment, and measurement oversees the progress of the study and provides guidance to the research team. An external evaluator assesses both formative and summative aspects of the evaluation component of the scope of work.

The key outcome of the study is a research-informed and field-tested intervention implemented under specific conditions for enhancing middle school science learning and teaching, and supported by partnerships between formal and informal organizations.

Life on Earth: Biodiversity and Evolution

This project will develop an online curriculum module for high school biology. It has three main goals: 1) Demonstrate how a story like malaria can integrate the teaching of multiple science topics and facilitate the diffusion of biodiversity and evolution across curriculum; 2) Model for students how to think like a scientist and show science as worthy of career consideration; and 3) Provide versatile multimedia as an alternative to textbook-centered instruction.

Award Number: 
1005460
Funding Period: 
Wed, 09/01/2010 to Wed, 08/31/2011
Full Description: 

This project will develop an online curriculum module for high school biology. The module is intended to be a major component of the larger Life on Earth (LOE) online textbook project being prepared by the E.O. Wilson Biodiversity Foundation. LOE is the cornerstone educational project of the foundation, conceived to lead the way into a new era of science learning in which versatile multimedia resources, available online, will replace bound textbooks as the principal tool of instructional support. In addition to be being more engaging, flexible, and cost-effective compared to textbooks, LOE is intended to bring a coherence often lacking in online resources. The approach is potentially transformative in offering a comprehensive and superior alternative to printed textbooks, while also providing features to help improve the way that science is taught, using a thoroughly interdisciplinary approach tied to cutting-edge scientific research. A nagging problem with the use of online materials is the sometimes inconsistent and seemingly haphazard nature of resources obtained from myriad places. For LOE, coherence will be achieved through careful consideration of how teachers and students actually use online resources, combined with the talents of a team of award-winning scientists, media developers, and educators. Careful attention to teachers' classroom, standards and curricular needs should facilitate wide adoption and dissemination.

This project will develop a pilot series of high school lessons with three main goals: 1) Demonstrate how a compelling multidimensional story like malaria can be used to integrate the teaching of multiple science topics and facilitate the diffusion of biodiversity and evolution across the life sciences curriculum; 2) Model for students how to think like a scientist and show science as an active enterprise, essential to a good education and worthy of career consideration; and 3) Provide versatile multimedia as an alternative to textbook-centered instruction that can better support a broad range of learning styles as promoted, for example, by the proponents of Universal Design for Learning. To achieve these goals, the LOE team will produce test materials and design a prototype website, as well as build a network of partnerships that includes teachers, scientists, scientist-educators and key organizations with similar goals and complementary interests.

Expanding PhET Interactive Science Simulations to Grades 4-8: A Research-Based Approach

Colorado’s PhET project and Stanford’s AAALab will develop and study learning from interactive simulations designed for middle school science classrooms. Products will include 35 interactive sims with related support materials freely available from the PhET website; new technologies to collect real-time data on student use of sims; and guidelines for the development and use of sims for this age population. The team will also publish research on how students learn from sims.

Project Email: 
Lead Organization(s): 
Award Number: 
1020362
Funding Period: 
Wed, 09/01/2010 to Sat, 08/31/2013
Project Evaluator: 
Stephanie Chasteen
Full Description: 

In this DRK12 project, the PhET Interactive Simulations group at the University of Colorado and the AAALab at Stanford University are working together to produce and study learning from interactive simulations designed for middle school science classrooms. We are developing a suite of 35 high-quality, interactive simulations covering physical science topics. These simulations include innovative technologies that provide teachers with real-time, formative feedback on how their students are using the simulations.  The research investigates how various characteristics of the simulation design influence student engagement and learning, and how this response varies across grade-level and diverse populations. The research also includes an investigation of different ways of using simulations in class, and how these approaches affect student preparation for future learning when they are no longer using a given simulation.

      The original PhET simulations were designed for college use, but overtime, they have migrated to lower grades.  The current suite of free research-based, interactive PhET science simulations are used over 10 million times per year.  To optimize their utility for middle school science, we are conducting interviews with diverse 4-8th graders using 25 existing PhET simulations to help identify successful design alternatives where needed, and to formulate generalized design guidelines. In parallel, pull-out and classroom-based studies are investigating a variety of lesson plans to identify the most promising approach. These studies include controlled comparisons that collect both qualitative and quantitative data.

      On the basis of our emerging design principles, we are developing 10 new simulations in consultation with teachers, who are helping to identify high need areas for simulations. These new simulations also include a back-end data collection capability that can collect, aggregate, and display student patterns of simulation use for teachers and researchers. The design of the data collection and presentation formats depends on an iterative process done in collaboration with teachers to identify the most useful information and display formats. A final evaluation compares student learning with and without this back-end formative assessment technology.   

This project is working to transform the way science is taught and learned in Grades 4-8 so that it is more effective at promoting scientific thinking and content learning, while also being engaging to diverse populations. The project is expected to impact many, many thousands of teachers and students through its production of a suite of 35 free, interactive science simulations optimized for Grades 4-8 along with “activity templates”, guidance, and real time feedback to teachers to support pedagogically effective integration into classrooms. Finally, the intellectual merit of the project is its significant contributions to understanding when, how, and why interactive simulations can be effective learning and research tools.

DRK12-Biograph: Graphical Programming for Constructing Complex Systems Understanding in Biology

This project will investigate how complex systems concepts supported by innovative curricular resources, technology applications and a comprehensive research and development structure can assist student learning in the domain of biology by providing a unifying theme across scales of time and space. The project seeks to address four areas of critical need in STEM education: biological sciences, complex systems, computational modeling, and equal access for all.

Award Number: 
1019228
Funding Period: 
Wed, 09/01/2010 to Sun, 08/31/2014
Project Evaluator: 
David Reider
Full Description: 

This proposal outlines a research and development project that investigates how complex systems concepts supported by innovative curricular resources, technology applications and a comprehensive research and development structure can assist student learning in the domain of biology by providing a unifying theme across scales of time and space. The project seeks to address four areas of critical need in STEM education: biological sciences, complex systems, computational modeling, and equal access for all. This proposal explores how these needs are addressed through a curricular and technological intervention that structures biology learning through the framework of complex systems and computational modeling. The primary partners are the Massachusetts Institute of Technology and the University of Pennsylvania, working with eight teachers in four schools in the Boston area.

The project integrates graphical programming and simulation software, StarLogo TNG, into the standard high school biology curriculum to improve learning of biology concepts through the introduction and understanding of core complex systems processes. Instead of learning biology in discrete chunks, the chosen biological topics are connected through the framework of complex systems, and successively build in complexity from the basic building blocks of life to the interdependence and sustainability of life forms. This approach is designed to help students understand how processes at one level are connected to those at another level. The research is designed to answer the following questions: 1. Does a learning progression based on the complex systems ideas of scale and emergence enable students to make connections across biological topics, remediate known misconceptions, and apply core complex systems principles better than traditional instructional sequences? 2. What are the on-going affordances and constraints of implementation taking into consideration structural, functional and behavioral variables and what changes to project activities yield increased implementation and learning capacities? 3. Does programming of simulations increase understanding of complex systems and biology concepts compared to use of previously constructed simulations? The evaluation is designed to collect data and provide feedback on the adherence to the plan, the implementation challenged, and how research informs development.

The project anticipates a number of deliverables towards the end of the project and beyond. These include the creation of a unified high school biology curricular sequence that builds in increasing spatial and temporal scales to deepen student understanding of four core biology topics; the production, implementation and testing of curricular activities that acknowledge and ameliorate known implementation challenges; and the development of curricular strategies and tools to help teachers and students improve knowledge and skills in computational modeling, computer programming and participation in the cyberinfrastructure. In order to increase ease of integration into schools, and enhance scalability, the simulation activities are facilitated by a new web-based version of StarLogo TNG that integrates the curricular materials all of which will be distributed freely. Additional dissemination strategies include a website, conferences, a newsletter, community activities, active dissemination, and academic presentations.

Virtual Learning Communities: An Online Professional Development Resource for STEM Teachers

This project will design, develop, and test a virtual learning community (VLC) to enhance the ability of first- and fourth-grade teachers to provide mathematics education. The goal is to produce a prototype of a VLC for first- and fourth-grade Everyday Mathematics teachers that integrates three primary elements: (a) learning objects rooted in practice, such as lesson video, (b) community-building tools offered by the internet, and (c) focused content that drives teachers' professional learning in mathematics.

Project Email: 
Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1020083
Funding Period: 
Thu, 07/15/2010 to Sun, 06/30/2013
Project Evaluator: 
none
Full Description: 

Researchers and developers at the University of Chicago are conducting an exploratory project to design, develop, and test a virtual learning community (VLC) to enhance the ability of first- and fourth-grade teachers to provide mathematics education. The project deploys cyberlearning technologies to allow teachers to interact with one another and with experts across the U.S. The goal is to produce a prototype of a VLC for first- and fourth-grade Everyday Mathematics teachers that integrates three primary elements: (a) learning objects rooted in practice, such as lesson video, (b) community-building tools offered by the internet, and (c) focused content that drives teachers' professional learning in mathematics.

This VLC is developed during two engineering cycles in which the project team engages teachers as central partners. The quality and utility of the resultant VLC is tested against the anticipated outcomes of (a) sustained participation by teachers in the VLC and (b) changes in teachers' "professional vision" in mathematics education. Sustained participation is tracked using web analytics and user logs. Changes in professional vision are measured by on-line assessment tools used by approximately 150 teachers.

The VLC develops learning objects; community-building tools; and focused content. The VLC will be launched during the third year of the project by way of the Everyday Mathematics website, which has over 6000 visitors per day, and the University of Chicago School Mathematics Project newsletter, which has a circulation of 40,000. The potential audience is quite large since Everyday Mathematics is used in 185,000 classrooms.

Pages

Subscribe to Website