Handbook/Manual

High Adventure Science: Earths Systems and Sustainability

This project is developing modules for middle school and high school students in Earth and Space Science classes, testing the hypothesis that students who use computational models, analyze real-world data, and engage in building scientific reasoning and argumentation skills are better able to understand Earth science core ideas and how humans impact Earth's systems. The resulting online curriculum modules and teacher guides provide exciting examples of next generation Earth science teaching and learning materials.

Project Email: 
Lead Organization(s): 
Award Number: 
1220756
Funding Period: 
Mon, 10/01/2012 to Fri, 09/30/2016
Project Evaluator: 
Karen Mutch-Jones
Full Description: 

We have entered the Anthropocene, an age when the actions of seven billion humans have increasing influence on the Earth. The High-Adventure Science: Earth Systems and Sustainability project is developing modules for middle school and high school students in Earth and Space Science classes, testing the hypothesis that students who use computational models, analyze real-world data, and engage in building scientific reasoning and argumentation skills are better able to understand Earth science core ideas and how humans impact Earth's systems. The Concord Consortium in partnership with the University of California Santa Cruz and the National Geographic Society are co-developing these modules, conducting targeted research on how the modules enhance students' higher order thinking skills and understanding of human-Earth interactions, and broadly disseminating these materials via far-reaching education networks.

The High-Adventure Science: Earth Systems and Sustainability project is creating online, middle and high school curriculum modules that feature computational models and cover five topics: climate change, fresh water availability, fossil fuel utilization, resource sustainability, and land use management. At the same time, the project team is conducting design studies to look at how specific features, prompts, argumentation and evaluation tools built into the modules affect student understanding of core Earth science concepts. The design studies promote rapid, iterative module development and help to identify features that support student learning, as well as scientific reasoning, scientific argumentation with uncertainty, systems thinking, and model-based experimentation skills. For each module, pre- and posttest data, embedded assessments, student surveys, classroom observations, teacher interviews and surveys, provide important information to rapidly improve module features, content, and usability. The final, high-quality, project materials are being made available to a national audience through the National Geographic Society as well as through the High-Adventure Science: Earth Systems and Sustainability website hosted at the Concord Consortium.

It is essential that students graduate from high school with a solid understanding of the scientific concepts that help explain how humans impact Earth systems, and conversely, how Earth processes impact humans. The High-Adventure Science: Earth Systems and Sustainability project provides a unique, research-based approach to conveying to students core Earth science content, crosscutting concepts, and fundamental practices of science. The resulting online curriculum modules and teacher guides provide exciting examples of next generation Earth science teaching and learning materials, and the research findings provide new insights on how students learn core science concepts and gain critical scientific skills.

Mathematical and Computational Methods for Planning a Sustainable Future

This Exploratory Project is developing two prototype innovative instructional modules for grades 9-12 modules, and testing them extensively for usability and impact. These modules will emphasize the role of mathematics and computer science in planning for sustainability.

Award Number: 
1220022
Funding Period: 
Mon, 10/01/2012 to Tue, 09/30/2014
Full Description: 

This Exploratory Project is developing two prototype innovative instructional modules for grades 9-12 modules, and testing them extensively for useability and impact. These modules will emphasize the role of mathematics and computer science in planning for sustainability. The primary hypotheses is that short (roughly one week) interdisciplinary modules can positively impact students' in the following ways:

- attitudes toward mathematics and computer science by immersion in sustainability topics of personal relevance;

- facility with cross-cutting skills in mathematical and computational methods;

- awareness of interdisciplinary issues in sustainability;

- empowerment to engage in sustainability discourse and exercise responsible citizenship;

- learning of the STEM practices and modes of inquiry necessary to become the next generation of interdisciplinary problem solvers;

- awareness of STEM educational opportunities and career paths related to sustainable living.

The project is conducted by Rutgers Bloustein School of Planning and Public Policy, the Consortium for Mathematics and its Applications (COMAP), Colorado State University (CSU), the National Center for Atmospheric Research (NCAR), and at multiple schools.

Topics for the initial two modules will be chosen by a high level Advisory Board from the following: Passive Solar Building Design, Weather Generators, Hydrologic Cycles, Invasive Species and Percolation, and Uncertainties with Projections in Climate Models. Each module will contain a description of career opportunities and related jobs, and highlight a person in one such job. Module writer teams of 2-3 writers consisting of at least one content expert and one pedagogical expert and/or experienced teacher will write the two modules in the first year; they will be tested with high school students in a summer prototyping workshop held at The Groton School in the summer between the two years of the project; revised during that summer; field tested in diverse high schools during the fall of the second year; revised again during the spring; and prepared for publication at the end of the two years.

Supporting the Emergence of a Professional Teaching Community Through Collective Knowledge-Building in Assessment and Feedback of Mathematical Thinking (Collaborative Research: Brandt)

This collaborative project is developing an online, professional teaching community that addresses issues of assessment in mathematics classes. The developers are building on the success of the NSF-supported Math Forum's Problem of the Week program to create a community that works to increase students' mathematics learning by helping teachers stimulate student thinking, assess that thinking, and provide useful feedback to students.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1221351
Funding Period: 
Sat, 09/01/2012 to Fri, 08/31/2018
Full Description: 

This collaborative work involves Drexel University and Temple University where they are developing an online, professional teaching community that is addressing issues of assessment in mathematics classes. The developers are building on the success of the NSF-supported Math Forum's Problem of the Week program to create a community that is working to increase students' mathematics learning by helping teachers stimulate student thinking, assess that thinking, and provide useful feedback to students. The teachers are working together to create rubrics for assessing the progress of students as they solve challenging mathematics problems. The program is structured so that the teachers are learning mathematics and assessment strategies in addition to establishing a research-based model for online, professional communities.

Researchers are studying how specific activities (e.g., discourse, active participation, use of rubrics, feedback, and reflection) and an online community support teachers' engagement in authentic and generative assessment. Researchers are using ethnographic methods to understand the development of the community, and conducting focus groups and individual interviews to determine the impact of participation in the community on mathematics teachers. In addition, they are collecting data through discourse analysis, student work analysis, and rubric analysis to determine the optimal design of the products. The intentional structure of the online community builds on research findings on creating professional communities and research on assessing mathematics learning.

Online professional teaching communities offer new venues for communication, professional development, and shared work among mathematics teachers. The Math Forum provides an optimal, online context for expanding the popular Problem of the Week into a productive discussion of assessment of problem solving, the building of specific rubrics, and the related reflection on how to encourage student thinking. This collaborative work will offer rubrics for assessing mathematical problem solving, a new model for online professional development, and extensive information on building an online mathematics community.

Developing Principles for Mathematics Curriculum Design and Use in the Common Core Era

This project is developing principles for supporting middle school mathematics teachers' capacity to use curriculum resources to design instruction that addresses the Common Core State Standards for Mathematics. These principles are intended for: (1) curriculum developers; (2) professional development designers, to help teachers better utilize curriculum materials with respect to the CCSSM; and (3) teachers, so that they can use curriculum resources to design instruction that addresses the CCSSM.

Award Number: 
1222359
Funding Period: 
Wed, 08/15/2012 to Sun, 07/31/2016
Project Evaluator: 
Horizon Research
Full Description: 

This project is developing principles for supporting middle school mathematics teachers' capacity to use curriculum resources to design instruction that addresses the Common Core State Standards for Mathematics (CCSSM). These principles are intended for: (1) curriculum developers to help in the design of curriculum materials; (2) professional development designers and local instructional leaders, to help teachers understand and better utilize curriculum materials with respect to the CCSSM; and (3) teachers, so that they can use curriculum resources to design instruction that addresses the CCSSM. The study addresses the following research questions:

1. What design features of materials support effective instructional design?

2. What teacher and district characteristics support effective instructional design?

3. How do teachers use materials to design instruction that addresses the new CCSSM?

4. What design practices lead to instruction that addresses the progressions and practices in the CCSSM?

A sample of teachers across grades 6 - 8 and their instructional leaders will be selected, up to a maximum of 72 teachers. The sample of teachers is purposefully diverse in terms of demographic, geographic, and curriculum contexts. The curricula include NSF-funded programs as well as commercially-developed programs. The ways teachers understand and access curriculum resources in fully digital environments as well as more conventional media will be studied. Partnering institutions include the University of Rochester, Michigan State University, Western Michigan University, and Washington State University Tri-Cities.

The data collection includes surveys, assessments of teachers' mathematical knowledge for teaching, observations of teachers' use and enactment of curriculum materials, analyses of student text and associated teacher resource materials, and teacher logs. These data are used to test conjectures about: (1) how curriculum materials, particularly the teacher resources, can be better designed to help teachers productively design instruction, especially with regard to incorporating the mathematical practices in the CCSSM; and (2) how teachers can be better supported to understand and use curriculum resources. The project evaluation includes formative and summative components, providing information and assistance to ensure that the project addresses its stated goals and employs rigorous methodology. Multiple methods are being used to collect evaluation data, including observations, interviews, and document review.

The deliverables are aimed at audiences who can impact large numbers of teachers and students, such as curriculum developers, designers of professional development, and researchers. The deliverables include: (1) guidelines for curriculum developers that are intended to make curriculum resources more transparent and accessible; (2) guidelines for instructional leaders to support teachers to use curriculum materials to design instruction that addresses the rigorous features of the CCSSM, and (3) refined instruments for studying teachers' curricular practices.

Partnerships for Early Childhood Curriculum Development: Readiness Through Integrative Science and Engineering (RISE)

The RISE project is creating curriculum resources for dual language learners (DLLs) in science, technology and engineering (STE). Participants include teachers in pre-K programs in the Boston area selected to target Hispanic and Chinese students and their families. The curriculum will be based on the Massachusetts framework, one of only a few states with pre-K standards. The evaluation will monitor both the progress of the research and development and the dissemination to the target audiences.

Lead Organization(s): 
Award Number: 
1221065
Funding Period: 
Sat, 09/01/2012 to Mon, 08/31/2015
Full Description: 

The RISE project is creating curriculum resources for dual language learners (DLLs) in science, technology and engineering (STE). Participants include teachers in pre-K programs in the Boston area selected to target Hispanic and Chinese students and their families. University partners include Tufts, Rutgers, Miami, and Northern Iowa, who will work with ABCD Head Start. An innovative feature is the incorporation of family funds of knowledge as a basis for the curriculum development. There are two research questions. 1. What are the most productive procedures for appropriate application of the full integrated RISE curriculum in Head Start classrooms serving DLL children? 2. What is the impact of the fully integrated RISE curriculum versus the comparison condition on teacher attitudes, classroom instruction, and quality, home-school relationships, and DLL children's STE knowledge and approaches to learning? In years 1 and two, 5 teachers are being supported, with 10 teachers in year 3. Participating parents are 40, 105, and 180 for years 1, 2 and 3. Professional development and mentoring is being provided for the teachers, and parent-teacher discussion groups are facilitating communication.

The research data is based on extensive classroom observations as well as interviews and surveys. For question 2, the project plans a quasi-experimental study of 10 RISE and 8 randomly selected comparison classrooms sampling 10 students in each classroom. Data will be analyzed with ANCOVA. The curriculum will be based on the Massachusetts framework, one of only a few states with pre-K standards. The evaluation will monitor both the progress of the research and development and the dissemination to the target audiences.

The curriculum materials are to be posted on the Tufts University website and a commercial publisher is being sought. Units are to be 6-12 weeks in duration, with a typical classroom engaging approximately four units. With the growing population of DLL students and the recognition that early childhood education in STE makes significant contributions to children's education, this project has the potential for national impacts.

Videocases for Science Teaching Analysis Plus (ViSTA Plus): Efficacy of a Videocase-Based, Analysis-of-Practice Teacher Preparation Program

The new ViSTA Plus study explores implementation of a program for pre-service/beginning teachers that is fully centered on learning from an analysis-of-practice perspective, addressing the central research question of "What is the value of a videocase-based, analysis-of-practice approach to elementary science teacher preparation?" The project is producing science-specific, analysis-of-practice materials to support the professional development of teacher educators and professional development leaders using the ViSTA Plus program at universities and in district-based induction programs.

Lead Organization(s): 
Award Number: 
1220635
Funding Period: 
Wed, 08/01/2012 to Sat, 06/30/2018
Full Description: 

Prior studies have demonstrated the positive impact of content-specific videocases of other teachers' practice on science content knowledge and ability to analyze teaching when the videocases are incorporated in the methods courses for preservice teachers. Similar outcomes occurred for experienced, inservice teachers in a year-long professional development that included analyzing video of their own and others' teaching, and these teachers changed their practice in ways that influenced students' science learning. The new ViSTA Plus study explores implementation of a 2-year program for preservice/beginning teachers that is fully centered on learning from an analysis-of-practice perspective, addressing the central research question of "What is the value of a videocase-based, analysis-of-practice approach to elementary science teacher preparation?"

ViSTA Plus presents a distinctive version of practice-based teacher education, one that immerses teachers into practice via scaffolded, collaborative analyses of videocases - starting with analysis of other teachers' videocases and moving to collaborative analysis of teachers' own videocases. The ViSTA Plus conceptual framework supports teachers in using Student Thinking and Science Content Storyline Lenses to analyze science teaching and in using a set of teaching strategies that support use of each of these lenses in their planning and teaching. Through this analysis work, teachers deepen their science content knowledge, develop the ability to analyze teaching and learning, and improve their teaching and their students' learning. The current study incorporates a quasi-experimental design to compare the impact of the ViSTA Plus program to that of traditional teacher preparation programs when implemented at universities that serve diverse populations, especially Native American, Hispanic, and low-SES students. Teacher measures are assessing science content knowledge (pre, mid, and posttests), ability to analyze science teaching and learning (pre, mid, and post video analysis tasks), and teaching practice (videorecorded lessons during student teaching and first year of teaching). Elementary students' science achievement is being assessed using pre-post unit tests during student teaching and the first year of teaching.

The study design addresses a gap in the research on preservice teacher preparation by following the pathway of program influence from teacher learning to teaching practice to student learning, and accomplishes this in the context of ViSTA Plus, an alternative, practice-based approach to teacher preparation that embeds all phases of teacher learning in practice from the beginning. Partner universities in this effort are eager to reimagine the traditional teacher preparation sequence, offering new models for the field. The project is producing science-specific, analysis-of-practice materials (videocases, methods course guides, study group guides) to support the professional development of teacher educators and professional development leaders using the ViSTA Plus program at universities and in district-based induction programs.

Mathematical Modeling Handbook

Developers and researchers from the Consortium for Mathematics and Its Applications (COMAP) and Teachers College are developing a Mathematical Modeling Handbook to assist high school mathematics teachers in integrating modeling into their curricula. The development team is also investigating how the lessons are used and working with the National Council of Teachers of Mathematics, the National Council of Supervisors of Mathematics, and the Association of State Supervisors to ensure a broad dissemination.

Award Number: 
1141709
Funding Period: 
Tue, 05/01/2012 to Tue, 04/30/2013
Full Description: 

Developers and researchers from the Consortium for Mathematics and Its Applications (COMAP) and Teachers College are developing a Mathematical Modeling Handbook to assist high school mathematics teachers as they try to integrate mathematical modeling into their curricula. The handbook is available in both an electronic and paper format.

Researchers at COMAP, working with advisors from Teachers College, are creating 25 fully developed modeling lessons that can be used and adapted by high school mathematics teachers. Teachers have contributed to the lessons and will pilot the lessons containing mathematical content, strategies for building and adapting mathematical models, pedagogical ideas and mathematical applications, The development team is also investigating how the lessons are used and working with the National Council of Teachers of Mathematics, the National Council of Supervisors of Mathematics, and the Association of State Supervisors to ensure a broad dissemination.

The Common Core State Standards in Mathematics (CCSSM) call for the practice of mathematical modeling to be taught in mathematics classes and this project provides a valuable resource that is not currently available for high school teachers. The team-developed materials and associated research on their use are examples of strategies to assist teachers in implementing the practice standards of the CCSSM.

A Framework for Assessing Environmental Literacy

This workshop developed a new, comprehensive, research-based framework for assessing environmental literacy. By bringing together, for the first time, experts in research, assessment, and evaluation from the fields of science education, environmental education, and related social science fields, this project accessed and built its work on the literature and the insights of many disciplines.

Award Number: 
1033934
Funding Period: 
Mon, 11/15/2010 to Wed, 10/31/2012
Project Evaluator: 
Joe Heimlich, OSU
Full Description: 
This workshop developed a new, comprehensive, research-based framework for assessing environmental literacy. By bringing together, for the first time, experts in research, assessment, and evaluation from the fields of science education, environmental education, and related social science fields, this project accessed and built its work on the literature and the insights of many disciplines. The North American Association for Environmental Education (NAAEE) worked with the leaders of the only two large-scale assessments of environmental literacy used in the U.S. to date (Programme for International Student Assessment [PISA] and the National Environmental Literacy Assessment [NELA]) to conduct the workshop. The project leaders analyzed PISA and NELA and used a multi-disciplinary search and review of the literature to prepare a draft framework. At the workshop and thereafter, a diverse array of invited experts critiqued that draft and provided suggestions for revision. Then, the leaders/organizers produced a final Environmental Literacy Framework and disseminated it both electronically and at a nationally advertised event to a wide audience of assessment specialists, funding and policy-making agencies, and organizations working to develop assessments and achieve environmental literacy. Many institutions and agencies have noted the need to create an environmentally literate population, and government and private entities are investing hundreds of millions of dollars in projects aimed at enhancing environmental literacy. Given the scope and scale of these investments and the interest in this arena on the part of federal agencies, professional organizations, and corporations, assessments for gauging our progress in transforming our preK-12 education system to achieve that end are needed. The new Framework for assessing environmental literacy provides a foundation for measuring the extent to which we are enabling all learners to acquire the knowledge, skills, dispositions, and behaviors vital for competently making decisions about local, regional, national and global issues.
Alternative video text
Alternative video text: 
A video of the National Press Club dissemination event is posted at www.NAAEE.net/Framework

Modeling Engineered Levers for the 21st Century Teaching of STEM (Collaborative Research: Schunn)

This project will develop three replacement units for biology and refine them through classroom testing. The units will be models of STEM integration by using the important concepts of proportional reasoning and algebraic thinking and engineering re-design to address big ideas in science while also promoting the learning of 21st century skills. The materials will be educative for teachers, and the teacher materials and professional development methods will work at scale and distance.

Project Email: 
Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1027629
Funding Period: 
Wed, 09/01/2010 to Sun, 08/31/2014
Project Evaluator: 
Bill Bickel
Full Description: 

Research in biology has become increasingly mathematical, but high school courses in biology use little mathematics. To address this concern, this project will develop three replacement units for biology and refine them through classroom testing. The units will be models of STEM integration by using the important concepts of proportional reasoning and algebraic thinking and engineering re-design to address big ideas in science while also promoting the learning of 21st century skills. The materials build on existing work on the use of model eliciting activities and focus science and technology instruction on high-stakes weaknesses in mathematics and science. They address the scaling issue as part of the core design work by developing small units of curriculum that can be applied by early adopters in each context. The materials will undergo many rounds of testing and revision in the early design process with at least ten teachers each time. The materials will be educative for teachers, and the teacher materials and professional development methods will work at scale and distance.

Learning of science content will be measured through the use of existing instruments in wide use. Existing scales of task values, achievement goals and interest are used to measure student motivation. The work performed is guided by a content team; a scaling materials team; a scaling research team; the PI team of a cognitive scientist, a robotics educator, and a mathematics educator specializing in educational reform at scale; and the summative evaluation team lead by an external evaluator.

There is great interest in understanding whether integrated STEM education can interest more students in STEM disciplines. The focus on mathematics integrated with engineering in the context of a science topic is interesting and novel and could contribute to our understanding of integrating mathematics, engineering and science. The development team includes a cognitive scientist, a mathematics educator, teachers and scientists. The issues and challenges of interdisciplinary instruction will be investigated.

Language-Rich Inquiry Science with English Language Learners (LISELL)

This exploratory study develops and pilot-tests a model for improving science teaching and learning with middle school ELLs. Study goals include: (1) clarifying pedagogical constructs of language-rich science inquiry and the academic language of science and their relationships across the learning contexts of middle school science classrooms, teacher professional development and family science workshops, (2) developing and refining instruments to study these constructs in context, and (3) conducting pilot tests of the model and instruments.

Award Number: 
1019236
Funding Period: 
Sun, 08/15/2010 to Wed, 07/31/2013
Full Description: 

This exploratory study develops, pilot-tests, and refines a model for improving middle school English Language Learners' (ELLs) science learning. The model incorporates two pedagogical constructs (language-rich science inquiry and academic language development); and three learning settings (teacher professional development workshops, middle school science classrooms, and parent-student-teacher science workshops). The specific objectives of the study are: (1) to clarify the two pedagogical constructs and their relationships across the three learning contexts, (2) to develop and refine instruments that will be useful for the study of these constructs in these learning contexts, and (3) to conduct pilot tests of the model and instruments.

The study's development phase consists of the production, adaptation, and pilot testing of instructional strategies for teachers and learning materials for students. Instructional strategies for teachers are centered on three key inquiry practices: (a) coordinating theory and evidence, (b) controlling variables, and (c) cause and effect reasoning across 6th grade earth science, 7th grade life science, and 8th grade physical science. Learning materials for students consist of lessons in a workbook with units highlighting the study of academic language. Also, this phase of the study includes the development of resources to support parents' participation and measurement instruments to gather data during the research phase of the study.

The research phase of the study consists of pilot testing of the model. Two research questions guide the study: (1 What is the value for ELL students, their teachers and their parents of an instructional model that highlights language-rich science inquiry practices and academic language development strategies?; and (2)What is the value for ELL students, their teachers and their parents of an instructional model that is enacted in the contexts of middle school science classrooms, student-parent-teacher science workshops, and teacher professional development workshops? Assuming a quasi-experimental, pretest-posttest design, a power analysis defined a sample size of 1,000 middle school students (800 for the treatment group, and 200 for the control group) in 40 classrooms of three middle schools in the state of Georgia. A total of 12 teachers (8 science teachers and 2 English for Students of Other Languages teachers) were selected using a targeted strategy; and 40 randomly selected parents constitute the remaining population sample. The intervention consists of the use of teacher instructional strategies focused on exploring and elaborating cause-effect relationships, differentiating between evidence and theory, and identifying and controlling variables; students' use of instructional materials on academic language; and exploration of parents' science funds of knowledge. Data gathering strategies employ five instruments: (a) a teacher-focus-group interview protocol, (b) a teacher observation protocol, (c) a parent-student interview protocol, (d) a student academic language writing test, and (e) a student-constructed-response science inquiry test. Data interpretation strategies include qualitative analysis using narrative and semantic structure analysis and statistical analyses. An advisory board and an evaluator conduct the evaluation component of the study, inclusive of formative and summative aspects.

The outcome of this study is a research-informed and field-tested science instructional model focused on the improved learning of ELLs and a set of valid and reliable measuring instruments.

Pages

Subscribe to Handbook/Manual