Developing Science Problem-Solving Skills and Engagement Through Intelligent Game-Based Learning Environments

Jonathan P. Rowe

James C. Lester
James Minogue

John L. Nietfeld
Hiller A. Spires

North Carolina State University
Intelligent Game-Based Learning Environments
Adaptive Story-Centric Games

- Game-based learning environments in which learners:
 - Participate in “story-centric” problem-solving activities
 - Immerse themselves in tailored narratives
- Revolve around:
 - Believable characters
 - Expansive virtual worlds
 - Rich stories
Intelligent Tutoring in Game-Based Learning Environments

- Affect-rich characters
- Problem-solving guidance
- Context-sensitive feedback
- Dynamic problem selection
- Tailored explanations
Research Question

How can intelligent game-based environments promote *problem solving* and *engagement* in STEM learning for upper elementary students?
CRYSTAL ISLAND – Upper Elementary Science

Subject
- 5th grade science
- Standards aligned

Content
- Landforms
- Maps, models & navigation

Story
- Adventurous adolescent
- Shipwrecked crew
- Complete quests to explore island
Click for Crystal Island Year 2 Walkthrough Video
Virtual Tablet
IslandPedia App
Problem-Solving Guidance

Here are some suggested problem solving strategies. Choose one that you think will help you.

- Guess and Check
- Make an organized list
- Draw a picture or a diagram
- Look for a pattern
- Solve a simpler problem
Markov Logic Network
Goal Recognition Framework

- Machine learning techniques for detecting students’ problem-solving goals
- Goal recognition models introduce opportunities for tailoring problem-solving guidance
- 82% improvement over baseline approaches

E. Ha, J. Rowe, B. Mott, & J. Lester, Goal Recognition with Markov Logic Networks for Player-Adaptive Games, Proceedings of the 7th Conference on Artificial Intelligence and Interactive Digital Entertainment, pp. 32-39, 2011.
Predicting Student Emotions

Game-Based Learning Studies
Classroom Studies

Scaffolding Study
- Onsite at 4 schools
- 379 fifth grade students
- 52% Caucasian, 25% African American, 11% Latino, 12% Other
- 2x2 factorial experiment comparing alternate in-game scaffolding methods

Curriculum Integration Study
- Onsite at 8 schools
- 831 fifth grade students
- 62% Caucasian, 14% African American, 8% Asian, 16% Other
- Teacher-driven implementation in classrooms
Findings

- **Significant learning gains**

Scaffolding
- Pre-test \((M=12.3, SD=3.8) \)
- Post-test \((M=13.0, SD=4.0) \)
- \(t(330)=5.70, p<.01 \)

Curriculum Integration
- Pre-test \((M=11.8, SD=4.1) \)
- Post-test \((M=13.6, SD=3.7) \)
- \(t(716)=17.70, p<.01 \)

- Significant gains replicated across multiple classroom studies.

- Greater learning gains observed in teacher-driven implementations.
Curriculum Integration Findings

- Significant gains on problem-solving model application task, $t(713)=3.72, p<.01$
- Significant gains in science self-efficacy, $t(713)=7.06, p<.01$
- Significant gains in landforms self-efficacy, $t(713)=6.77, p<.01$
- Significant correlation between mastery approach goal orientation and curriculum post-test, $r=.31, p<.05$
Future Directions

- Adaptive quest generation and sequencing
- Embedded assessment capabilities
- Dynamic explanation generation and feedback
- Enhanced collaboration functionalities
- Emotionally adaptive virtual characters
- Extended classroom deployments
Conclusions

- Game-based learning environments can produce significant STEM learning gains.
- Game-based learning environments can be effectively deployed in classrooms with standards-aligned curricula.
- Game-based learning environments hold considerable promise for promoting significant content learning gains, problem solving and sustained engagement.
Acknowledgements

Research Scientist
Brad Mott (Computer Science)

Postdoc
Eunyoung Ha (Computer Science)

Graduate Students (Computer Science)
Alok Baikadi
Julius Goth
Joe Grafsgaard
Seung Lee
Sam Leeman-Munk
Wookhee Min
Chris Mitchell
Jennifer Sabourin
Andy Smith

Staff
Kirby Culbertson
Sarah Hegler
Eleni Lobene
Adam Osgood
Rob Taylor

Affiliated Faculty
Kristy Boyer (Computer Science)
Michael Carter (English)
Patrick FitzGerald (Art & Design)
Marc Russo (Art & Design)
Eric Wiebe (Mathematics, Science, & Technology Ed)

Affiliated Post-Docs and Graduate Students (Art, Education, Psychology)
Megan Hardy (Human Factors)
Kristin Hoffman (Educational Psychology)
Angela Meluso (Curriculum & Instruction)
Lucy Shores (Educational Psychology)
Sinky Zheng (Curriculum & Instruction)

This work was supported by the National Science Foundation under grants REC-0632450, IIS-0757535, DRL-0822200, IIS-0812291, DRL-1007962, DRL-1020229, The Bill & Melinda Gates Foundation, The William and Flora Hewlett Foundation, and EDUCAUSE.
Findings

Significant Bivariate Correlations with Curriculum Post-test by Study

<table>
<thead>
<tr>
<th></th>
<th>Scaffolding Study</th>
<th>Curriculum Integration Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-Efficacy</td>
<td>Science self-efficacy (r = .37)</td>
<td>Landform self-efficacy (r = .33)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Models self-efficacy (r = .28)</td>
</tr>
<tr>
<td>Goal Orientation</td>
<td>Mastery approach (r = .29)</td>
<td>Mastery approach (r = .31)</td>
</tr>
<tr>
<td>Performance Attribution</td>
<td>Effort (r = .13)</td>
<td>Effort (r = .23)</td>
</tr>
<tr>
<td>Quests Completed</td>
<td>Total quests completed (r = .44)</td>
<td></td>
</tr>
</tbody>
</table>

* All findings significant at p < .05