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Recently, there has been an increase in the number of cluster randomized trials

(CRTs) to evaluate the impact of educational programs and interventions. These

studies are often powered for the main effect of treatment to address the ‘‘what

works’’ question. However, program effects may vary by individual charac-

teristics or by context, making it important to also consider power to detect

moderator effects. This article presents a framework for calculating statistical

power for moderator effects at all levels for two- and three-level CRTs.

Annotated R code is included to make the calculations accessible to researchers

and increase the regularity in which a priori power analyses for moderator

effects in CRTs are conducted.

Keywords: statistical power; cluster randomized trials; moderator effects

In the past 15 years, there has been a strong shift toward the use of randomized

trials (RTs), and specifically cluster RTs (CRTs), to evaluate the impact of

educational programs and interventions. In CRTs, intact clusters (e.g., schools)

are assigned to treatment conditions rather than individuals (e.g., students). CRTs

are frequently an effective way to study interventions because they permit

researchers to accommodate existing school structures and interventions that are

designed to operate at the school level (Spybrook & Raudenbush, 2009). In order

to yield rigorous evidence of whether a program works, however, such studies

must be carefully designed. A principal consideration in the design of CRTs is

the power or probability with which a study can detect effects if they exist.

The body of literature on statistical power for CRTs has largely focused on

detecting average/main effects of treatment. A sizable number of articles and

books have been published on this topic (i.e., Bloom, 1995; Donner & Klar,
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2000; Hedges & Rhoads, 2009; Konstantopoulos, 2008; Liu, 2014; Murray,

1998; Raudenbush, 1997; Raudenbush & Liu, 2001; Schochet, 2008). The

designs covered include two- and three-level CRTs as well as blocked or multi-

site CRTs (MSCRTs). This body of literature has clearly established that (1) the

number of clusters is more influential than the number of individuals per cluster

in terms of increasing the power of a study to detect the main effect of treatment

of a given magnitude; (2) the more variability in the outcome across clusters, the

greater the number of clusters needed; and (3) including a cluster-level covariate

that is highly correlated with the outcome is often a cost-effective and efficient

strategy for increasing the power.

Conducting the power calculations for the main effect of treatment for CRTs

has also become much easier. Standard statistical software programs, for exam-

ple, SAS Version 9.4, allow users to conduct power calculations for CRTs using

procedures for mixed models (Littell, Milliken, Stroup, Wolfinger, & Schaben-

berger, 2006). In addition, several stand-alone programs for power calculations

for CRTs exist including Optimal Design Plus (Raudenbush et al., 2011), CRT

Power (Borenstein & Hedges, n.d.), and PowerUp! (Dong & Maynard, 2013).

A priori power calculations for the main effect of a treatment help ensure the

study has the capacity to address the ‘‘what works’’ question. However, there is a

growing recognition that there are important explanatory questions that need to

be addressed if we are to fully understand the validity and value of substantive

theories and interventions in education. One critical line of inquiry that is largely

missing in conventional study designs concerns treatment effect moderation—or

questions examining ‘‘for whom and under what circumstances’’ an intervention

works. For example, it may be that an intervention is more effective in urban

schools compared to rural schools or for girls compared to boys, such that school

or individual characteristics moderate the treatment effect. Understanding the

context in which an intervention is likely to be effective is fundamental to

understanding the extent to which results are scalable and applicable to a wide

range of schools and students.

The importance of studying moderation has gained considerable momentum

in the field. For instance, in 2012, the conference theme for the annual meeting of

the Society for Research on Educational Effectiveness was Understanding Var-

iation in Treatment Effects and highlighted the importance of understanding how

to design studies to enable them to better assess heterogeneity of treatment

effects. Moderator effects that measure the treatment effect difference between

subgroups represent one type of heterogeneous treatment effect. More recently,

funders have started to strongly recommend a priori power analyses for tests of

moderator effects (Institute of Education Sciences, 2016, p. 60). However, the

literature for conducting power analyses for moderator effects in CRTs is less

developed than for main effects.

Much like the case of power for the main effect of treatment in CRTs, the

classic experimental design literature provides a framework for power
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calculations for moderator effects in CRTs. For example, one could consider a

two-level CRT with a moderator at the individual level as a split-plot design with

treatment as a whole-plot factor and the individual-level moderator as a split-plot

factor (Littell et al., 2006). However, as evidenced by the large literature on

power for main effects for CRTs, the reformulation of such designs within the

familiar purview of hierarchical or multilevel models is prominent in education.

This reframing facilitates direct connections among multilevel designs, hypoth-

esis testing, and multilevel models that reduce power calculations to principles

that are more concrete and accessible to researchers. Such restructuring has

promoted a more informed appreciation for the factors that govern power and

led to more reasonable approximations of power in recent CRTs (e.g., Spybrook

& Raudenbush, 2009). Hence, it is critical to present power calculations for

moderator effects within the context of CRTs and multilevel models and directly

connect them to power calculations for the main effect. Only a handful of articles

have done this. Raudenbush and Liu (2001) derive power formulas for site-level

moderator effects for multisite trials in which individuals are randomly assigned

within sites. Bloom (2005) and Jaciw (2014) focus on two-level CRTs with a

binary Level 1 or Level 2 moderator. They provide formulas for the minimum

detectable effect size difference (MDESD) or the smallest effect size difference

that can be detected with power set to 0.80. Spybrook (2014) provides empirical

estimates of the power of a set of funded CRTs to detect moderator effects but

does not delineate an approach to estimate the power to detect moderation within

the context of CRTs.

Statistical software options for calculating power for moderator effects for

CRTs are also more limited than for power for the main effect. For example, none

of the three most widely used programs for calculating power for CRTs, Optimal

Design Plus (Raudenbush et al., 2011), CRT Power (Borenstein & Hedges, n.d.),

or PowerUp! (Dong & Maynard, 2013), have specific functionality for calculat-

ing power for testing moderation.

The purpose of this article is to extend the literature and the tools available for

power analyses for moderator effects in nested CRTs. As mentioned above,

Bloom (2005) and Jaciw (2014) present MDESD formulas for the two-level

CRT. We extend this work to power calculations for binary moderators at any

level in a three-level CRT. We also implement the power formulas for moderator

effects for the two-level and three-level CRT through two user-friendly tools to

facilitate the use of these power formulas in planning CRTs. The tools include

annotated R code and implementation of the formulas in PowerUp!1 (http://

www.causalevaluation.org/). We expect these tools will help make this work

accessible to education researchers and increase the regularity in which a priori

power analyses for moderator effects in CRTs are conducted.

The article is organized as follows. We begin with the model for a two-level

CRT and briefly walk through the power calculations for the main effect of

treatment. This is for pedagogical purposes, as it allows us to anchor notation
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and concepts in the more familiar power analyses for the main effect of treatment

and directly transfer these to the less familiar power analyses for moderator

effects. Next we provide the model and tests for a cluster-level and individual-

level moderator in a two-level CRT and three-level CRT for balanced designs.

To make direct connection among the approaches, we purposefully unpack and

connect the models, test statistics, and noncentrality parameters. Then we extend

to the case of unbalanced designs. Next we present several practical and delib-

erate examples of how to conduct a power analysis for different moderator

effects. In the concluding section, we summarize the key components of the

power calculations, explore the results and the implications of powering for

moderator effects in the design of two- and three-level CRTs, and discuss future

directions for this work.

Two-Level CRTs

Main Effect of Treatment

Suppose a team of researchers are planning a two-level CRT with students

nested within schools and treatment assigned at the school level. Mathematics

achievement is the outcome of interest. The Level 1 or student-level model is

Yij ¼ b0j þ eij eij*Nð0;s2Þ; ð1Þ

where Yij is the math achievement for individual i ¼ f1, . . . , ng in school

j ¼ f1, . . . , Jg, b0j is the mean math achievement for school j, and eij is the

residual error associated with students with variance s2.

The Level 2 model or cluster-level model is

b0j ¼ g00 þ g01Tj þ r0j r0j*Nð0; t00Þ; ð2Þ

where g00 is the grand mean math achievement; g01 is the mean difference

between the treatment and control group or the main effect of treatment; Tj is

a treatment indicator, with �½ for control and ½ for treatment; and r0j is the

residual error associated with schools with variance t00. We assume equal allo-

cation of clusters to treatment and control.

The treatment effect is estimated by ĝ01 ¼ �Y E � �Y C where �Y E is the mean for

the treatment group and �Y C is the mean for the control group. The variance of the

estimated treatment effect is (Raudenbush, 1997)

Varðĝ01Þ ¼ 4ðt00 þ s2=nÞ=J : ð3Þ

Note the variance is a function of the within-cluster variance, s2; the between-

cluster variance, t00; the sample size within cluster, n; and the total number of

clusters, J. The 4 is a result of J/2 clusters per condition, since we are assuming a

balanced design.2
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In this case, we are testing H0: g01 ¼ 0. The power for the test is (Kirk, 1982)

Power ¼ Prob ðReject H0jH0 is falseÞ
¼ Prob ðF > Fa;1; J�2Þ
¼ 1� Prob ðF < Fa;1; J�2Þ;

ð4Þ

where F is the F-statistic ¼ MST

MSC
from the sample (see Kirk, 1982, for

details), MST is the mean squares for the treatment, MSC is the mean squares

for the cluster, and Fa;1; J�2 is the critical value under the null hypothesis

with 1 numerator degree of freedom and J � 2 denominator degrees of

freedom.

If the null hypothesis is true, then the F-statistic follows the central F-distri-

bution. If the null hypothesis is false, then the F-statistic follows the noncentral

F-distribution with a noncentrality parameter, l. The noncentrality parameter is a

ratio of the squared main effect of treatment to the variance of the estimated

treatment effect, as shown in Equation 5

l ¼ g2
01

Varðĝ01Þ
¼ g2

01

4ðt00 þ s2=nÞ=J
: ð5Þ

As the noncentrality parameter increases, the power increases. Thus, for the

main effect of treatment in a two-level CRT, increasing the total number of

clusters, J, has a greater effect on increasing power than increasing the total

number of individuals per cluster, n, holding everything else constant. Note that

it is common to standardize the parameters and reexpress l as

l ¼ d2

4½rþ ð1� rÞ=n�=J
; ð6Þ

where r ¼ t00

t00þs2 is the intraclass correlation (ICC) or percentage of variance

between clusters, and d ¼ g01ffiffiffiffiffiffiffiffiffiffiffi
t00þs2
p is the standardized effect size.

Before we move to the cluster-level moderator, we outline the extension for

the main effect of treatment to the case with a cluster-level covariate. It is

common practice to include a cluster-level covariate in the design of a CRT in

order to increase the precision of the estimate (Raudenbush, Martinez, & Spy-

brook, 2007). Although an individual-level covariate may also be included, we

focus on the cluster-level covariate because this directly reduces the between-

cluster variance and is often more readily available and less expensive to collect

than an individual-level covariate (Bloom, Richburg-Hayes, & Rebeck-Black,

2007). In this case, the Level 2 model is

b0j ¼ g00 þ g01Tj þ g02Wj þ r0j r0j*Nð0; t00jW Þ: ð7Þ

The proportion of Level 2 variance explained by the covariate W is

R2
jW ¼ 1� t00jW

t00
. Using the standardized parameters, the noncentrality
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parameter for the case with one cluster-level covariate and hence J � 3

degrees of freedom is

ljW ¼ d2

4 ð1� R2
jW Þrþ

�
ð1� rÞ=n

�h i
=J
: ð8Þ

Note that the cluster-level covariate cannot reduce the variance at Level 1

since it is the same within clusters.

Cluster-level moderator. Suppose that the pool of schools in the previous study

includes different types of schools, such as urban and rural schools. The research

team suspects that the treatment effect may differ in urban schools compared to

rural schools. Hence, they are interested in whether type of school, urban or rural,

moderates the treatment effect. For illustrative purposes, suppose half the schools

in the study are urban and half are rural and that they are equally allocated across

conditions. The Level 1 model is identical to Equation 1. The Level 2 model or

cluster-level model is

b0j ¼ g00 þ g01Tj þ g02Sj þ g03ðTjSjÞ þ r0j r0j*Nð0; t00jSÞ; ð9Þ

where g00 is the grand mean; g01 is the mean difference between the treatment

and control group; Tj is a treatment indicator, with �½ for control and ½ for

treatment; Sj is a school type indicator, with �½ for urban and ½ for rural; g02 is

the school type effect, g03 is the Treatment � School Type interaction; and r0j is

the residual error associated with clusters with variance t00|S. The proportion of

Level 2 variance explained by the moderator S and the interaction of S and T is

R2
jS ¼ 1� t00jS

t00
.

The moderator effect is estimated by ĝ03 ¼ ½ �Y
R

E � �Y
U

E � � ½ �Y
R

C � �Y
U

C �. The

variance of the estimated moderator effect is

Varðĝ03Þ ¼ 16½ð1� R2
jSÞt00 þ s2=n�=J : ð10Þ

Note that the 16 in front is a function of the fact that there are now J/4 clusters

per condition since there are now four conditions, rural experimental, urban

experimental, rural comparison, and urban comparison.

The power for the cluster-level moderator effect, g03, is an extension of the

power for the main effect of treatment. The hypothesis of interest in this case is

H0: g03 ¼ 0, the F-statistic is a ratio of MST:S, which is the mean squares for the

interaction, to the MSC, the degrees of freedom for the test are J � 4, and the

noncentrality parameter, ljS is the ratio of the squared treatment effect to the

variance of the estimated moderator effect

ljS ¼
g2

03

16½ð1� R2
jSÞt00 þ s2=n�=J

: ð11Þ
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For consistency with main effect calculations, we standardize by setting t00þ
s2 ¼ 1. Hence, the noncentrality parameter using standardized notation is

ljS ¼
d2

CLmod

16½ð1� R2
jSÞrþ ð1� rÞ=n�=J

; ð12Þ

where dCLmod ¼ g03ffiffiffiffiffiffiffiffiffiffiffi
t00þs2
p .

As discussed above, it is common to include a cluster-level covariate to

increase precision, thus the new Level 2 model is

b0j ¼ g00 þ g01Tj þ g02Sj þ g03ðTjSjÞ þ g04Wj þ r0j r0j*Nð0; t00jWSÞ: ð13Þ

The addition of the cluster-level covariate further reduces the Level 2 variance

where R2
jWS
¼ 1� t00jWS

t00
is the proportion of Level 2 variance explained by the

covariate W, the moderator S, and the interaction of S and T. The standardized

noncentrality parameter, with J � 5 degrees of freedom, is

ljWS ¼
d2

Clmod

16 1� R2
jWS

� �
rþ

�
ð1� rÞ=n

�h i
=J
: ð14Þ

Similar to the main effect of treatment, it is clear that the total number

of clusters is the key sample size for increasing the power to detect cluster-

level moderator effects. However, there are also important differences in

the noncentrality parameters in Equations 7 and 14. First, the multiplier in

the variance of the estimated treatment effect is 4 times larger for the

moderator effect. This is a result of having J/4 clusters per condition rather

than J/2 clusters per condition. Second, the set of covariates being condi-

tioned on differs. For main effects, we condition on cluster-level covari-

ate(s), whereas for moderator effects, we condition on the cluster-level

covariate(s) and the moderator. Third, the numerator is a standardized

differential treatment effect rather than a main effect. We briefly consider

the role of these three factors before we move to the individual-level

moderator.

First, consider the case in which, R2
jWS

is equal to R2
jW . In this case, the

moderator is not explaining any additional variance. Hence, the variance of the

estimated treatment effect for the cluster-level moderator is 4 times greater than

the main effect of treatment. If we set the magnitude of the treatment effect and

moderator effect to be the same, then it is clear that more clusters would be

needed to achieve the same level of power for the treatment effect and cluster-

level moderator effect. However, the situation is actually more challenging

because it seems likely that the magnitude of the cluster-level moderator effect

will be smaller than the main effect of treatment in many practical settings

because it is the difference in the treatment effect for two groups (Aguinis, Beaty,

Boik, & Pierce, 2005). The smaller size of the cluster-level moderator combined

Spybrook et al.
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with the larger variance means that many more clusters would be needed to

achieve a given level of power for the moderator effect than are typically needed

for the main effect of treatment.

Next, suppose that R2
jWS

is greater than R2
jW . Mathematically it is clear that

this will help reduce the variance of the moderator effect compared to the main

effect of treatment helping to improve the power for the moderator effect.

However, in education studies, binary moderators generally explain little addi-

tional variance beyond that explained by commonly used cluster-level covari-

ates. This is primarily because the most common cluster-level covariate in

education studies is a pretest. Studies have shown that cluster-level pretests

are likely to explain 60% to 80% of the variation in the outcome (see Spybrook,

2013, for a review of empirical studies). Further, school characteristics have not

been shown to explain much additional variation beyond the pretest (Bloom

et al., 2007). This means that although R2
jWS

may be greater than R2
jW , the

difference is not likely to be large. Combined with the fact that the magnitude

of the moderator effect will likely be smaller than the main effect of treatment,

it will be challenging to achieve adequate power to detect a cluster-level mod-

erator effect.

Individual-level moderator. We might be interested in whether gender moderates

the treatment effect. The Level 1 model or student-level model is now

Yij ¼ b0j þ b1jXij þ eij eij*Nð0;s2
jxÞ; ð15Þ

where Yij is the math achievement for individual i ¼ f1, . . . , ng in school

j ¼ f1, . . . , Jg; b0j is the mean achievement in school j; Xij is an indicator for

gender, with�½ for boys and ½ for girls; b1j is the gender gap in school j; and eij

is the residual error associated with students. Note that gender explains the

variation at Level 1 such that R2
jX ¼ 1� s2

jX
s2 . We hold the gender effect constant

within clusters. For pedagogical reasons, we assume that the means of gender are

same among clusters and do not include the aggregated version of gender in the

Level 2 model. However, this could easily be included in the models below. The

school-level model is

b0j ¼ g00 þ g01Tj þ r0j r0j*Nð0; t00Þ;
b1j ¼ g10 þ g11Tj

ð16Þ

where g00 is the mean achievement across schools; Tj is a treatment indicator,

with �½ for control and ½ for treatment; g01 is the average treatment effect; g10

is the gender gap; g11 is the Treatment � Gender interaction; and r0j is the error

associated with mean achievement across schools with variance t00. Note we do

not allow the gender gap to vary randomly across schools, although the model

could be modified to reflect a random gender gap.

Power for Detecting Treatment by Moderator Effects
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The individual-level moderator effect is estimated by ĝ11 ¼ ½ �Y
G

E � �Y
B

E��
½ �Y G

C � �Y
B

C�. The variance of the estimated moderator effect is

Varðĝ11Þ ¼ 16½ð1� R2
jxÞs2�=nJ : ð17Þ

Similar to the case of a cluster-level moderator, the 16 in front of the

variance is a function of the four groups, girls in treatment, boys in treatment,

girls in comparison, and boys in comparison. However, unlike the variance for

the cluster-level moderator effect, the between-school variance, t00, does not

contribute to the variance of the estimated moderator effect. This is because

the differences in boys and girls are within schools and hence school effects

cancel out.

The hypothesis of interest in this case is H0: g11¼ 0, the F-statistic is a ratio of

MST:X, which is the mean squares for the interaction effect, to the MSC with

degrees of freedom n � J � J � 2. Given that the noncentrality parameter is a

ratio of the squared treatment effect to the variance of the estimated treatment

effect, it can be expressed as

ljx ¼
g2

11

½16ð1� R2
jxÞs2�nJ

: ð18Þ

In order to be able to compare results with the power for the main effect of

treatment and cluster-level moderators, we standardize the same way as above

lx ¼
d2

INDmod

½16ð1� R2
jxÞð1� rÞ�=nJ

; ð19Þ

where dINDmod ¼ g11ffiffiffiffiffiffiffiffiffiffiffi
t00þs2
p .

There are important differences in the noncentrality parameter for the

individual-level moderator compared to the noncentrality parameters for main

effect of treatment and the cluster-level moderator. The key difference is that the

between-cluster variance is not a part of the denominator for individual-level

moderator effects. As a result, the number of individuals per cluster becomes as

important as the total number of clusters. This differs from the main of treatment

and the cluster-level moderator effect where the number of individuals per clus-

ter was less critical and the number of clusters was the key sample size.

Before we move to the three-level case, we briefly summarize the key findings

from the two-level case. From a sample size perspective, the total number of

clusters is the most influential sample size for increasing the power to detect the

main effect of treatment and a cluster-level moderator effect. However, the

variance of the cluster-level moderator effect can be up to 4 times as large as

the main effect of treatment which means many more clusters are necessary in

order to detect a treatment effect of the same magnitude. Given that moderator

effects tend to be smaller than main effects and education CRTs are typically

Spybrook et al.
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designed to detect the main effect, the potential to design education CRTs with

the capacity to detect cluster-level moderator effects of a reasonable magnitude

may be limited. The situation is much more optimistic for designing two-level

CRTs to detect individual-level moderator effects. This is a result of two

factors: the between-school variance does not impact the power calculations

and the number of individuals per cluster is equally as important as the total

number of clusters. Hence, for a fixed total number of clusters, while increasing

the number of individuals per cluster will not yield measurable gains for the

power to detect the main effect of treatment or the cluster-level moderator

effect, it has the potential to yield important gains in the power for the

individual-level moderator effect.

Three-Level CRT

Main Effect of Treatment

Next we extend the work to the case of a three-level CRT. Suppose the same

team of researchers are considering including a middle level in the study, teach-

ers, so that they have a three-level CRT with students nested within teachers

nested within schools. Math achievement remains the outcome of interest. The

Level 1 or student-level model is

Yijk ¼ p0jk þ eijk eijk*Nð0;s2Þ; ð20Þ

where Yijk is the math achievement for individual i ¼ f1, . . . , ng in teacher

j ¼ f1, . . . , Jg in school k ¼ f1, . . . , Kg; p0jk is the mean math achievement for

teacher j in school k; and eijk is the error associated with students with variance

s2. The Level 2 or teacher-level model is

p0jk ¼ b00k þ r0jk r0jk*Nð0; tpÞ; ð21Þ

where b00k is the mean math achievement for school k and r0jk is the error

associated with teachers with variance tp. The Level 3, or school-level model is

b00k ¼ g000 þ g001Tk þ u00k u00k*Nð0; tb00
Þ; ð22Þ

where g000 is the grand mean math achievement; g001 is the mean difference

between the treatment and control group or the main effect of treatment; Tk is a

treatment indicator, with�½ for control and ½ for treatment; and u00k is the error

associated with schools with variance tb00. We assume equal allocation of clus-

ters to treatment and control.

The treatment effect is estimated by ĝ001 ¼ �Y E � �Y C . The variance of the

estimated treatment effect is

Varðĝ001Þ ¼
4½tb00

þ ðtp þ s2=nÞJ �
K

: ð23Þ

Power for Detecting Treatment by Moderator Effects
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The hypothesis of interest is H0: g001 ¼ 0, the F-statistic is a ratio MST to the

MSC, the degrees of freedom for the test are K � 2, and the noncentrality

parameter is

l ¼ g2
001

4½tb00
þ ðtp þ s2=nÞ=J �=K

: ð24Þ

Like in the case of the two-level CRT, it is common to standardize the para-

meters such that

l ¼ d2

4frb þ ½rp þ ð1� rb � rpÞ=n�=Jg=K
; ð25Þ

where d ¼ g001ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tb00
þtpþs2

p is the standardized effect size; rb ¼
tb00

tb00
þtpþs2 is the ICC

at Level 3, or the percentage of the total variance at Level 3; and rp ¼ tp
tb00
þtpþs2

is the ICC at Level 2, or the percentage of the total variance at Level 2.

It is also typical to include a school-level covariate to increase the power of

the study. Assuming a school-level covariate, such as school-level pretest, the

Level 3 variance will be reduced by R2
jW ¼ 1� tb00 jW

tb00

. In this case, the noncen-

trality parameter is

lW ¼ d2

4fð1� R2
jW Þrb þ ½rp þ ð1� rb � rpÞ=n�=Jg=K

: ð26Þ

School-level moderator. Again we assume that half the schools in the study are

urban and half are rural and that they are equally allocated across conditions. The

Level 1 and Level 2 models are identical to Equations 20 and 21. The new Level

3 model is

b00k ¼ g000 þ g001Tk þ g002Sk þ g003ðTkSkÞ þ u00k u00k*Nð0; tb00jSÞ; ð27Þ

where g000 is the grand mean math achievement; g001 is the mean difference

between the treatment and control group; Tk is a treatment indicator, with�½ for

control and ½ for treatment; Sk is a school type indicator, with �½ for urban and

½ for rural; g002 is the school type effect; g003 is the Treatment � School Type

interaction or the school-level moderator effect; and u00k is the residual error

associated with schools. Note that where R2
jS ¼ 1� tb00 jS

tb00

is the proportion of

Level 3 variance explained by the moderator and the interaction of the moderator

and treatment.

The moderator effect is estimated by ĝ003 ¼ �Y
R

E � �Y
U

E

h i
� �Y

R

C � �Y
U

C

h i
. The

variance of the estimated moderator effect is

Varðĝ003Þ ¼ 16½ð1� R2
jSÞtb00

þ ðtp þ s2=nÞ=J �=K: ð28Þ
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The hypothesis of interest in this case is H0: g003 ¼ 0, the F-statistic is a ratio

of MST:S to the MSC, the degrees of freedom for the test are K � 4, and the

noncentrality parameter, ljS , is

ljS ¼
g2

003

16½ð1� R2
jSÞtb00

þ ðtp þ s2=nÞ=J �=K
: ð29Þ

Hence, the noncentrality parameter using standardized notation is

ljS ¼
d2

SCHmod

16fð1� R2
jSÞrb þ ½rp þ ð1� rb � rpÞ=n�=Jg=K

; ð30Þ

where dSCHmod ¼ g003ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tb00
þtpþs2

p and all other terms were defined previously.

Note that we could also include a cluster-level moderator, W, where R2
jSW
¼

1� tb00 jSW

tb00

is the proportion of Level 3 variance explained by the covariate, the

moderator term, and the interaction. Like the two-level CRT, the noncentrality

parameter for the school-level moderator with a school-level covariate looks very

similar to the noncentrality parameter with a school-level covariate in Equation

30 except that it is conditioned on a different set of variables and the multiplier is

a 16 rather than a 4. As in the case of the two-level CRT, it is unlikely that the

moderator will explain a large proportion of the variance beyond that explained

by the common school-level covariate, the school-level pretest.

Teacher-level moderator. Given the three levels, we can also test for moderator

effects at the teacher level. For example, teacher experience may moderate the

effect of the intervention. Assume that teacher experience is quantified as new

teacher (teaching 0–5 years) or veteran teacher (teaching more than 5 years). The

Level 1 model remains the same as in Equation 20. The new Level 2 or teacher-

level model is

p0jk ¼ b00k þ b01kMjk þ r0jk r0jk*Nð0; tpjM Þ; ð31Þ

where b00k is the mean math achievement for school k; Mjk is an indicator for

teacher experience, with�½ for 0–5 years, or new teacher, and ½ for more than

5, or veteran teacher; b01k is the teacher experience gap in school k; and r0jk is

the residual error associated with teachers. Note that we assume that percentage

of variance explained by teacher variance is R2
jM ¼ 1� tpjM

tp
. Although it is

common for Level 2 variables to be aggregated up to Level 3 and included

in the model, for ease of interpretation, we do not do this. The Level 3 or

school-level model is

b00k ¼ g000 þ g001Tk þ u00k u00k*Nð0; tb00Þ;
b01k ¼ g010 þ g011Tk

ð32Þ
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where g000 is the grand mean math achievement; g001 is the mean difference

between the treatment and control group; Tk is a treatment indicator, with

�½ for control and ½ for treatment; g010 is the teacher experience gap; g011

is the Treatment � Teacher Experience interaction; and u00k is the residual

error associated with schools with variance tb00. Note that we do not allow

the experience gap to vary randomly across schools, although this assump-

tion could be relaxed.

The parameter of interest is g011. The moderator effect is estimated by ĝ011 ¼
½ �Y New

E � �Y
Exp

E � � ½ �Y
New

C � �Y
Exp

C �. The variance of the estimated moderator effect

is

Varðĝ011Þ ¼ 16
�

1� R2
jM

� �
tp þ s2=n

�
=J

h i
=K: ð33Þ

The F-statistic in this case though is a ratio MST:M, which is the mean squares

for the interaction to the MSC with J � K � J � 2 degrees of freedom. The

noncentrality parameter is defined as

ljM ¼
g2

011

16

��
1� R2

jM

�
tp þ s2=n

�
=J

� �
=K

or

ljM ¼
d2

TCH mod

16

��
1� R2

jM

�
rp þ

�
1� rb � rp

�
=n

�
=J

� �
=K

;

ð34Þ

where dTCHmod ¼ g011ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tbþtpþs2
p .

Note that the between-school variance does not enter the calculations for the

power of the teacher-level moderator, as the difference between new and expe-

rienced teachers is within schools. The teacher-level variance and student-level

variance are the only two variance components that affect the power. Hence, the

number of teachers per school becomes a much more critical sample size in the

power calculations.

Individual-level moderator. We might also be interested in whether gender mod-

erates the treatment effect in a three-level CRT. The Level 1 model or student-

level model is now

Yijk ¼ p0jk þ p1jkXijk þ eijk eijk*Nð0;s2
jxÞ; ð35Þ

where Yijk is the math achievement for individual i ¼ f1, . . . , ng in teacher

j ¼ f1, . . . , Jg in school k ¼ f1, . . . , Kg; p0jk is the mean achievement for

teacher j in school k; Xijk is an indicator for gender, with �½ for boys and ½ for

girls; p1jk is the gender gap for teacher j in school k; and eij is the residual error

associated with students. The percentage of variance explained by gender is
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R2
jx ¼ 1� s2

jx
s2 . For simplicity of interpretation, we do not aggregate gender to the

next levels. The teacher-level model is

p0jk ¼ b00k þ r00k r00k*Nð0; tpÞ;
p1jk ¼ b10k

ð36Þ

where b00k is the mean achievement across schools; r00k is the error associated

with mean achievement across teachers in schools with variance tp. Note we do

not allow the gender gap to vary randomly across teachers in schools. The new

Level 3 model is

b00k ¼ g000 þ g001TK þ u00k u00k*Nð0; tb00
Þ;

b10K ¼ g100 þ g101TK
ð37Þ

where g000 is the grand mean achievement; Tk is a treatment indicator, with �½

for control and ½ for treatment; g001 is the overall treatment effect; g100 is the

gender gap; g101 is the Treatment � Gender interaction; and r00k is the error

associated with schools with variance tb00
.

The moderator effect of interest is g101, which is estimated by ĝ101 ¼
½ �Y G

E � �Y
B

E� � ½ �Y
G

C � �Y
B

C�. The variance of the estimated moderator effect is

Varðĝ101Þ ¼ ½16ð1� R2
jxÞs2�nJK: ð38Þ

The F-statistic in this case though is a ratio MST:X to the MSC with n � J �
K � J � K � K � 2 degrees of freedom and the noncentrality parameter is

defined as

ljx ¼
g2

101

½16ð1� R2
jxÞs2�nJK

or ljx ¼
d2

INDmod

½16ð1� R2
jxÞð1� rb � rpÞ�=nJK

; ð39Þ

where dINDmod ¼ g101ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tbþtpþs2
p .

Note that because the moderator is at Level 1 and hence the difference

between boys and girls is within teacher, the between-teacher and between-

school variance components are removed from the variance of the moderator

effect. Hence, the number of individuals per cluster is a critical sample size in

power calculations for the individual-level moderator effect in a three-level CRT.

The three-level CRT is a natural extension of the two-level CRT and findings

are similar. That is, for the main effect and the school-level moderator, the power

is most heavily influenced by the total number of clusters. In addition, designing

a study to detect a school-level moderator will require many more clusters than

designing a study to detect the main effect of treatment since the moderator effect

will likely be smaller and the variance of the estimated moderator effect may be

up to 4 times that of the main effect. As we consider lower level moderators, the

sample size at the level of the moderator becomes more important. That is, for a

teacher-level moderator, the number of teachers is as important as the total
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number of schools, given that the between-school variance is removed. Further,

for a student-level moderator, the number of students is as influential as the

number of teachers per school and the total number of schools because the

between-teacher and between-school variance components are removed from

the moderator effect.

Unbalanced Designs

Thus far, we have assumed perfectly balanced designs. For example, in a

two-level CRT with 40 total schools we assumed the ideal case, 20 schools in

treatment and 20 schools in control, and 10 rural and 10 urban school in each

condition. Given this structure, we maximize the power for both the test of the

main effect and the cluster-level moderator.

However, in practice, it may not always be feasible to achieve a perfectly

balanced design. For example, suppose that in order to increase the likelihood of

schools participating in a study, the researchers plan to assign 28 schools to the

treatment condition and 12 to the control condition. We can use the same for-

mulas described above for the test of the main effect of treatment by replacing the

total number of clusters with the effective sample size for the calculations. In this

case, the effective sample size is 2 times the harmonic mean (HM). The HM of

the treatment and control conditions is HM ¼ 2
1

JT
þ 1

JC

or HM ¼ 2
1

28
þ 1

12

*16:8. Hence,

the effective sample size for the calculations is 16.8 clusters per condition for a

total number of 33.6 clusters.3 Given that the power is strongly influenced by the

total number of clusters, the power to detect an effect of a given magnitude will

be less for designs that are not balanced.

The same process can be used for the moderator power calculations. However,

now we need the HM of the four groups: rural treatment, urban treatment, rural

control, and urban control. Suppose that of those 28 treatment clusters, 14 are

rural schools and 14 are urban schools, and of the 12 control clusters, 6 are rural

schools and 6 are urban schools. The HM of the four groups is HM ¼
4

1
JTR
þ 1

JTU
þ 1

JCR
þ 1

JCU

or HM ¼ 4
1

14
þ 1

14
þ1

6
þ1

6

*8:4. Hence, the effective sample size is 8.4

clusters per condition for a total number of 33.6 clusters. In essence, the total

number of clusters used for the calculations is 33.6 rather than 40, which will

reduce the power to detect a cluster-level moderator effect of a given magnitude.

The logic of this example is applicable for any of the power calculations

discussed in this article and can be applied as follows: First, identify the estimator

for the effect of interest. Second, identify the sample size for each of the groups

included in the estimator. If they are not equal, calculate the HM for each group.

For power calculations, for the main effect of treatment, double the HM to

calculate the total effective sample size that will be used for the calculations.

For power calculations, for the moderator effects, calculate the HM for each of
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the four groups and multiply it by four for the effective sample size that can be

used for the calculations. The effective total sample size for the power calcula-

tions may be different for the main effect and the moderator effects depending on

the allocation of clusters and individuals.

It is important to note that in practice the sample sizes for the different

moderator variables may be beyond the control of the researcher. For example,

there may not be an equal number of boys and girls in a class, or new and

experienced teachers within a school, or rural and urban schools in the sample

of schools willing to participate in the study. As the imbalance increases, the

power to detect an effect of a given magnitude will decrease. Hence, to the extent

possible, it is important to identify moderators of interest prior to recruiting for a

study and to consider these variables during the recruitment process.

Examples

We begin with an example of a two-level CRT. Continuing with the idea of

mathematics achievement as the primary outcome, suppose that based on past studies

of the intervention, a team wants to design a study to detect a main effect of treatment

that has a standardized effect size of 0.20. They plan to test the intervention in urban

and rural schools and are interested in whether the treatment effect is moderated by

school type. Recognizing that the moderator effect will be smaller than the main

effect of treatment, they are interested in detecting a cluster-level moderator effect of

0.10. Suppose the team is limited to a total of 40 schools, 20 urban and 20 rural, with

100 students per school. Assume that they assign 20 schools to each condition and

that the number of urban and rural schools in each condition is balanced. Note that

this assumption could be relaxed to allow for imbalance in groups in which case the

HM calculations described above would apply. Based on the literature (Hedges &

Hedberg, 2009, 2014), they estimate an ICC of 0.23. They have access to a school-

level covariate, last year’s scores, and assume an R2
jW ¼ 0:66: They estimate that

school type will explain additional variance at the school level and thus R2
jSW
¼ 0:75:

Note that the R code provided in Appendix A, available in the online version of the

journal, was used for the power calculations in the examples.

Figure 1 shows the power to detect the main effect of treatment of 0.20 and the

cluster-level moderator of 0.10. As expected, the power for the main effect of

treatment is always greater than the power for the cluster-level moderator. Assuming

40 total clusters, the power to detect the main effect of treatment in this case is 0.56.

In order to reach the acceptable level of 0.80, they would need an additional 30

clusters for a total of 70. The power to detect the cluster-level moderator effect of

0.10 for 40 total clusters is only 0.09. Assuming 70 total clusters, the number needed

to reach adequate power for the main effect of treatment, the power is still only 0.13

for a cluster-level moderator of 0.10. It is clear that the number of clusters to achieve

adequate power for the cluster-level moderator will be outside a reasonable range.
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Suppose that a different team of researchers are also designing a study of the

same intervention. They were concerned that the treatment effect may have a

differential effect on boys and girls, hence they are interested in power the study

to detect an individual-level moderator effect in addition to the main effect of

treatment. They seek to detect an individual-level moderator effect of 0.10.

Assuming the same design parameters as above, a total of 40 schools, 100

students per school (assuming half girls and half boys), an ICC ¼ 0.23, and an

R2
jW ¼ 0:66, we know the power for the main effect of treatment of 0.20 is 0.56

and that 70 total schools are needed for the power of 0.80. Based on Bloom,

Richburg-Hayes, and Rebeck-Black (2007), we assume that gender explains

approximately 10% of the variance in achievement within schools, or

R2
jx ¼ 0:10. The power to detect an individual-level moderator is 0.48 and

0.71, with 40 and 70 schools, respectively. Note the power is much higher than

in the cluster-level moderator case because the number of individuals per school

is a key sample size. In fact, assuming all parameters are held constant, the power

to detect an individual-level moderator of 0.10 with only 40 schools increases to

0.80 if approximately 115 more students are included in each school. Although

this would increase the total number of students in the study from 4,000 to 8,600,

if the costs associated with adding individuals is small because, for example, a

state test is the outcome of interest for the study and all students take the test, it

may be very feasible to include more students and have an adequately powered

study to detect an individual-level moderator effect.

The three-level CRT follows the same pattern as the two-level CRT. That is,

the power for the main effect of treatment and the school-level moderator is
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FIGURE 1. Power curves for main effect of treatment and cluster-level moderator.
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driven by the total number of clusters or schools. The power for the lower level

moderator effects is also strongly influenced by the sample size of the mod-

erator of interest. For example, Table 1 displays the power to detect the main

effect of treatment, cluster-level moderator, teacher-level moderator, and

individual-level moderator under the following assumptions: main effect of

treatment of 0.20, school-level moderator effect of 0.10, teacher-level modera-

tor effect of 0.10, student-level moderator effect of 0.10, a total of 40 schools,

either 5 or 30 teachers per schools, either 10 or 30 kids per teacher, an ICC at

the school level of 0.15, an ICC at the teacher-level of 0.08, R2
jW ¼ 0:75,

R2
jSW
¼ 0:80, R2

jM ¼ 0:10, and R2
jX ¼ 0:10.

The table illustrates the effects of the sample sizes at different levels on

different effects. For the main effect of treatment and the cluster-level mod-

erator, the power is not strongly influenced by increases in the number of

individuals per teacher or the total number of teachers per school. However,

increasing the total number of teachers per school increases the power to detect

a teacher-level moderator. The challenge with this is that, in many cases, the

total number of teachers per school may be small, particularly if only one grade

level is represented. For the individual-level moderator, it is clear that increas-

ing for 10 to 30 students per teachers has a strong effect on the power, partic-

ularly in the case with a smaller total number of schools and number of

teachers. For most elementary and middle/high schools, a per class sample size

of 25 to 30 is quite common. The smaller sample sizes are more prevalent in

pre-K studies that may make individual-level moderator effects more difficult

to detect in these studies.

TABLE 1.

Power for Main Effect, Cluster-Level Moderator, Teacher-Level Moderator, and

Individual-Level Moderator Effects

Power:

Main

Effect

Power:

Cluster-Level

Moderator

Power:

Teacher-Level

Moderator

Power:

Individual-Level

Moderator

J ¼ 5

n ¼ 10 0.65 0.10 0.15 0.27

n ¼ 30 0.72 0.10 0.20 0.64

J ¼ 30

n ¼ 10 0.85 0.13 0.61 0.91

n ¼ 30 0.86 0.13 0.79 0.99

Note. The main effect of treatment¼ 0.20, school-level moderator¼ 0.10, teacher-level moderator¼
0.10, student-level moderator ¼ 0.10, 40 total schools, 5 or 30 teachers per schools, 10 or 30 kids per

teacher, an intraclass correlation (ICC) at the school level of 0.15, an ICC at the teacher level of 0.08,

R2
jW ¼ 0:75, R2

jSW
¼ 0:80, R2

jM ¼ 0:10, and R2
jX ¼ 0:10, and equal allocation of clusters across

condition.
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Discussion

The capacity of CRTs to provide rigorous evidence of the main effect of

treatment has improved in the past decade. That is, more recent CRTs are being

designed with adequate power to detect a meaningful main effect of treatment

that past CRTs (Spybrook & Raudenbush, 2009). As we start to design studies

that enable us to determine whether or not an intervention has an overall effect,

we also begin to ask other important question regarding whether the effect is the

same across different kinds of schools, teachers, and students. Hence, it becomes

important to think about whether we can power CRTs to detect not only the main

effect of treatment but also important moderator effects.

Some general patterns emerge from the findings related to the different types

of moderator effects. For the purpose of this discussion, consider a two-level

CRT with students nested within schools and a three-level CRT with students

nested within teachers nested within schools. In both cases, powering for the

school-level moderator effect will be challenging, given the current size of CRTs

in the field. As illustrated by the formulas and in the examples, the power for a

cluster-level moderator tends to be much smaller than the power for the main

effect. Given that it is often challenging for teams to afford enough clusters to

power for the main effect of treatment, the number of schools required to power

for a cluster-level moderator is likely to be outside the budgetary constraints.

This suggests that the analysis of school-level moderator effects may require a

more meta-analytic approach involving combining across studies.

However, lower level moderator effects hold much more promise from a

power perspective. In a three-level CRT with students nested in teachers nested

in schools, designing studies to detect teacher-level moderators may be possible.

That is, the power for teacher-level moderators is driven more by the number of

teachers per schools as shown in the formulas and examples. For studies exam-

ining the effect of a whole school intervention in which randomization takes

place at the school level and all teachers in the school are involved, it may be

reasonable to design the study with adequate power to detect teacher-level mod-

erators because the number of teachers per school may be large. This presents an

important opportunity for researchers to be able to answer critical questions

about teacher moderator effects that may help improve the likelihood an inter-

vention is effective. For example, if the researchers determine that an interven-

tion is more effective with experienced teachers rather than novice teachers, they

may be able to put in additional professional development opportunities for less

experienced teachers to help them overcome challenges.

The greatest potential for detecting moderator effects in CRTs lies in

individual-level moderator effects. As we saw in both the two- and three-level

CRT, the power for the individual-level moderator depends much more heavily

on the number of individuals per cluster. In many CRTs in education, all of the

students in a school or all of the students in a grade will participate in a study.
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This means that there are often large numbers of individuals per cluster. Taking

advantage of the number of individuals per cluster and hence asking a priori

questions about individual-level moderators can help researchers better under-

stand for whom a program is effective. This is a critical step toward designing,

developing, and implementing programs that meet the needs of all students. For

example, suppose that a group of researchers testing a math curriculum are

concerned that the program is less effective for English-language learners (ELL).

In their sample, about half of the students are ELLs and hence they test whether

ELL moderates the treatment effect. If findings suggest that there is a differential

effect, the team can then explore how to modify the treatment, so that ELL and

non-ELLs benefit from the program.

For many other K–12 studies, powering to detect an individual-level mod-

erator of a reasonable magnitude may be a very realistic goal for the study. The

exception to this case is when there are only a small number of individuals per

cluster. For example, in pre–K classrooms, the number of students per class may

be less than seven which would make powering the study to detect individual-

level moderators very challenging.

Future Directions

In this article, we focused on clustered designs. Extending the work to MCRTs

is critical, as multisite studies are quite common in evaluations of educational

interventions. Furthermore, we discussed binary moderators in this article. Mod-

erators can also be continuous in nature, for example, whether the program’s

effect is moderated by school quality, and extending the work to continuous

moderators is another critical step. We also fixed the moderator effects at lower

levels. It may not always be the case that moderator effects are fixed and thus

allowing the moderator effects to vary randomly is another area for future

research. In addition, understanding more about the magnitude of moderator

effects is a critical step toward planning studies appropriately. For example, how

different is the effect on boys and girls? Or for urban schools versus rural

schools? As we begin to develop empirical estimates of the magnitude of mod-

erator effects, we can start to use these effect sizes to guide the power analyses.
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Notes

1. For this article, we use the annotated R code for the examples. PowerUp!
could also be downloaded at http://www.causalevaluation.org/ and used for

the examples.

2. Note we could also express this formula as Varðĝ01Þ ¼ ðt00þs2=nÞ
Pð1�PÞJ where P is

the proportion of clusters assigned to the treatment condition. Assuming a

balanced design, the expressions are equivalent. We assume a balanced design

throughout, hence we adopt the notation set forth in Equation 3.

3. It is important to note that using the harmonic mean (HM) is equivalent to

Bloom’s (2005) approach for the two-level CRT, which asks for the propor-

tion of clusters assigned to each condition. His formula includes an additional

term of 1
Pð1�PÞ where P is the proportion of clusters assigned to treatment. In a

balanced case, this yields the 4 in the variance term. In an unbalanced case, it

is equivalent to substituting twice the HM for the total number of clusters.
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