Supporting the intersections between Computer Science and the NGSS.

Josh Caldwell, Code.org
Jennifer Childress, Achieve
Irene Lee, Santa Fe Institute

NSTA STEM Forum & Expo
May 22, 2015 Minneapolis, MN
Outline of today’s presentation

Part I: Computer Science
• Part Ia: The Need for Computer Science Education
• Part Ib: Computer Science across the curriculum

Part II: Next Generation Science Standards
• Part IIa: Science and Engineering Practices
• Part IIb: Computational Thinking

Part III: Intersections
• Part IIIa: STEM workforce needs
• Part IIIb: Features to look for integrations
• Part IIIc: Challenges and opportunities presented
Definitions and Scope

Computer science is an academic discipline that encompasses the study of **computers and algorithmic processes**, including their principles, their **hardware and software designs**, their **applications**, and their impact on society (CSTA, 2011)

Computational science is a combination of computer science, **science, and mathematics**. Seen as a **third leg of science**, joining theoretical and experimental science, computational science is made possible with the advent of powerful computers.

Computational thinking is the **human ability to formulate problems** so that their solutions can be represented as **computational steps or algorithms** to be carried out by a computer.
Supporting the intersections between Computer Science and the NGSS.

Josh Caldwell, Code.org
Our Vision: every school every student opportunity
Who is Code.org

Non-Profit organization that launched in 2013 with a video

Dedicated to expanding participation in computer science increasing participation of females and underrepresented students of color

Have a vision that every student in every school should have the opportunity to learn computer science

Have a belief that computer science and computer programming should be part of the core curriculum alongside other STEM courses
Computers are changing everything, yet most schools don’t teach computer science
Our kids should be learning to code.
Our kids should be learning computer science.
Computer science education is on the rise.
Computer science education is on the **Recovery from a 10-year decline.**
Fewer computer science students than 10 years ago (and half as many women)

Sources: National Science Foundation
The tech industry is desperately trying to hire computer programmers.
Every industry is desperately trying to hire computer programmers.
1,000,000 more jobs than students by 2020

$500 billion opportunity

1.4 million computing jobs

400,000 computer science students
The “STEM” problem is in CS

- 40% All other STEM jobs
- 60% Computing jobs
- 90% All other STEM graduates
- 10% Computing graduates
Computer science is about technology.
Computer science is about logic, problem solving, and creativity.
First computer: 1943
First computer: 1943
First computer program: 1843
Computer science is vocational.
Computer science is foundational.
Can the public education system evolve?
Introducing the Hour of Code

A grassroots movement fueled by 200 partners, 100,000 teachers, in all 196 countries
In just 1 week:

More girls participated in computer science than in the last 70 years.
Number of Students:
What can you learn in an hour?
What’s after the #HourOfCode?
Code.org’s 3 Pillars

<table>
<thead>
<tr>
<th>Advocate</th>
<th>Celebrate</th>
<th>Educate</th>
</tr>
</thead>
<tbody>
<tr>
<td>National and Regional Political Advocacy</td>
<td>Videos</td>
<td>Elementary School</td>
</tr>
<tr>
<td>Make CS count</td>
<td>Celebrities</td>
<td>• 4 20hr courses</td>
</tr>
<tr>
<td></td>
<td>The Hour of Code</td>
<td>Middle School</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• CS in Algebra</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• CS in Science</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High School</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Exploring CS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• AP CS Principals</td>
</tr>
</tbody>
</table>
Code.org’s Middle School Programs

<table>
<thead>
<tr>
<th>Computer Science in Algebra</th>
<th>Computer Science in Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Developed with Bootstrap</td>
<td>• Developed by Project GUTS</td>
</tr>
<tr>
<td>• Block-based functional</td>
<td>• Block-based modeling and</td>
</tr>
<tr>
<td>programming</td>
<td>simulation programming</td>
</tr>
<tr>
<td>• Integrated into Pre-Algebra or Algebra I</td>
<td>• Integrated in Earth, Life, or Physical Science</td>
</tr>
<tr>
<td>• Roughly 20 hours of</td>
<td>• Roughly 20 hours of</td>
</tr>
<tr>
<td>curriculum</td>
<td>curriculum</td>
</tr>
</tbody>
</table>
Blended Professional Development

- **Spring:** Pre-workshop online prep (~2 hours)
- **Summer:** In-person workshop (3 days)
- **Summer:** Online reflection and planning (~8 hours)
- **School Year:** Online and In-person follow up

Workshop costs and teacher stipends covered by Code.org

Science PDs with openings this Summer!
Ohio, LA & Orange County CA, Seattle, Atlanta, Houston, Charles County MD.
Supporting the intersections between Computer Science and the NGSS.

Jennifer Childress, Achieve
Innovations in the NGSS
Innovations in the NGSS

1. Three-Dimensional Learning
Science and Engineering Practices

1. Asking questions and defining problems
2. Developing and using models
3. Planning and carrying out investigations
4. Analyzing and interpreting data
5. Using mathematics, information and computer technology, and computational thinking
6. Constructing explanations and designing solutions
7. Engaging in argument from evidence
8. Obtaining, evaluating, and communicating information
Innovations in the NGSS

1. Three-Dimensional Learning
2. Students Engaging in Phenomena and Designed Solutions
Innovations in the NGSS

1. Three-Dimensional Learning
2. Students Engaging in Phenomena and Designed Solutions
3. Engineering Design and Nature of Science are integrated into science
Innovations in the NGSS

1. Three-Dimensional Learning
2. Students Engaging in Phenomena and Designed Solutions
3. Engineering Design and Nature of Science are integrated into science
4. All three dimensions build coherent learning progressions
Innovations in the NGSS

1. Three-Dimensional Learning
2. Students Engaging in Phenomena and Designed Solutions
3. Engineering Design and Nature of Science are integrated into science
4. All three dimensions build coherent learning progressions
5. Science is connected to math and literacy
Science and Engineering Practices

1. Asking questions and defining problems
2. Developing and using models
3. Planning and carrying out investigations
4. Analyzing and interpreting data
5. Using mathematics and computational thinking
6. Constructing explanations and designing solutions
7. Engaging in argument from evidence
8. Obtaining, evaluating, and communicating information
Computational Thinking in the NGSS PEs

HS-PS3-1. Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known.

HS-LS2-1. Use mathematical and/or computational representations to support explanations of factors that affect carrying capacity of ecosystems at different scales.

HS-LS4-6. Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.*

HS-ESS1-4. Use mathematical or computational representations to predict the motion of orbiting objects in the solar system.

HS-ESS3-3. Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.

HS-ESS3-6. Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.

HS-ETS1-4. Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem.
How do we build throughout K-12 Instruction to get students there?

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematical and computational thinking in K–2 builds on prior experience and progresses to recognizing that mathematics can be used to describe the natural and designed world(s).</td>
<td>Mathematical and computational thinking in 3–5 builds on K–2 experiences and progresses to extending quantitative measurements to a variety of physical properties and using computation and mathematics to analyze data and compare alternative design solutions.</td>
<td>Mathematical and computational thinking in 6–8 builds on K–5 experiences and progresses to identifying patterns in large data sets and using mathematical concepts to support explanations and arguments.</td>
<td>Mathematical and computational thinking in 9–12 builds on K–8 and experiences and progresses to using algebraic thinking and analysis, a range of linear and nonlinear functions including trigonometric functions, exponentials and logarithms, and computational tools for statistical analysis to analyze, represent, and model data. Simple computational simulations are created and used based on mathematical models of basic assumptions.</td>
</tr>
</tbody>
</table>

From NGSS Appendix F
How do we build throughout K-12 Instruction to get students there?

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Decide when to use qualitative vs. quantitative data.</td>
<td>• Decide if qualitative or quantitative data are best to determine whether a proposed object or tool meets criteria for success.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Use counting and numbers to identify and describe patterns in the natural and designed world(s).</td>
<td>• Organize simple data sets to reveal patterns that suggest relationships.</td>
<td>• Use digital tools (e.g., computers) to analyze very large data sets for patterns and trends.</td>
<td>• Create and/or revise a computational model or simulation of a phenomenon, designed device, process, or system.</td>
</tr>
<tr>
<td>• Describe, measure, and/or compare quantitative attributes of different objects and display the data using simple graphs.</td>
<td>• Describe, measure, estimate, and/or graph quantities such as area, volume, weight, and time to address scientific and engineering questions and problems.</td>
<td>• Use mathematical representations to describe and/or support scientific conclusions and design solutions.</td>
<td>• Use mathematical, computational, and/or algorithmic representations of phenomena or design solutions to describe and/or support claims and/or explanations.</td>
</tr>
</tbody>
</table>
How do we build throughout K-12 Instruction to get students there?

|-------------------------|--------------------------|-------------------------|--------------------------|
| • Use quantitative data to compare two alternative solutions to a problem. | • Create and/or use graphs and/or charts generated from simple algorithms to compare alternative solutions to an engineering problem. | • Create algorithms (a series of ordered steps) to solve a problem.
• Apply mathematical concepts and/or processes (such as ratio, rate, percent, basic operations, and simple algebra) to scientific and engineering questions and problems.
• Use digital tools and/or mathematical concepts and arguments to test and compare proposed solutions to an engineering design problem. | • Apply techniques of algebra and functions to represent and solve scientific and engineering problems.
• Use simple limit cases to test mathematical expressions, computer programs, algorithms, or simulations of a process or system to see if a model “makes sense” by comparing the outcomes with what is known about the real world.
• Apply ratios, rates, percentages, and unit conversions in the context of complicated measurement problems involving quantities with derived or compound units (such as mg/mL, kg/m³, acre-feet, etc.). |
Examples of Computational Modeling in the NGSS PEs

K-ESS3-1. Use a model to represent the relationship between the needs of different plants and animals (including humans) and the places they live.

2-ESS2-2. Develop a model to represent the shapes and kinds of land and bodies of water in an area.

4-PS4-1. Develop a model of waves to describe patterns in terms of amplitude and wavelength and that waves can cause objects to move.

5-LS2-1. Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment.

MS-PS1-4. Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed.

MS-LS3-2. Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation.

MS-ETS1-4. Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

HS-PS1-4. Develop a model to illustrate that the release or absorption of energy from a chemical reaction system depends upon the changes in total bond energy.
Examples of other PEs for which modeling and simulation can be useful tools

MS-LS2-1. Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem.
What are some other places to use Computer Science principles to build toward student proficiency in NGSS PEs?

Resources:
• Nextgenscience.org/search-performance-expectations
• NGSS app
• Hard copies of the NGSS
Other examples:

MS-LS2-4. Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.

MS-ESS3-5. Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.

HS-PS1-5: Apply scientific principles and evidence to provide an explanation about the effects of changing the temperature or concentration of the reacting particles on the rate at which a reaction occurs;

HS-ETS1-1: Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
Supporting the intersections between Computer Science and the NGSS.

Irene Lee, Santa Fe Institute

With support from the National Science Foundation DRL 0639637, OCI 1057672, and CNS 1240992.
The Need

- CS is a foundational part of the practice of science and engineering
- CS contributes to advancement in every field of Science
- Computational science seen as 3rd leg of Science in addition to theoretical & experimental approaches.

President’s Information Technology Advisory Committee’s Report to the President, *Computational Science: Insuring America’s Competitiveness* (2005).
A COMPUTATIONAL THINKING ENABLED STEM WORKER:

• engages in a creative process to solve problems, design products, automates systems, or improve understanding by defining, modeling, qualifying and refining systems, processes or mechanisms generally through the use of computers.

Computational thinking often occurs in collaboration with others.
Scientist’s toolkit

Computer Modeling and Simulation:
- Agent based modeling
- Stochastic modeling
- Monte Carlo simulation
- Systems dynamics modeling

New Sub-fields:
- Computational Biology
- Computational Physics
- Computational Social Science
- Computational Chemistry
Computational Thinking

Computer Modeling and Simulation:
- Agent based modeling
- Stochastic modeling
- Monte Carlo simulation
- Systems dynamics modeling

Computational Thinking:
- Abstraction
- Automation
- Analysis
Our Challenge

- to prepare computational thinking-enabled students who are able “to formulate problems so that their solutions can be represented as computational steps or algorithms to be carried out by a computer.”
Computational Thinking in K-12

<table>
<thead>
<tr>
<th></th>
<th>Abstraction</th>
<th>Automation</th>
<th>Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modeling & Simulation</td>
<td>Selecting features of real-world to incorporate in a model.</td>
<td>Time stepping using a model as an experimental testbed.</td>
<td>Were the correct abstractions made? Does the model reflect reality?</td>
</tr>
<tr>
<td>Robotics</td>
<td>Design robot to react to a set of conditions.</td>
<td>Program checks sensors to monitor conditions.</td>
<td>Are there situations that were not taken into account?</td>
</tr>
<tr>
<td>Game Design & Development</td>
<td>Games are abstracted into a set of scenes containing characters</td>
<td>Game responds to user actions.</td>
<td>Do the elements incorporated make the game fun to play?</td>
</tr>
</tbody>
</table>
Supporting Growth in CT

- Provide opportunities to learn and practice basic CS concepts and constructs
Thinking about models

- Comparing and contrasting real world “participatory simulations” and the same activities within a computer model.

Setup in a large circle (at least 4 ft away from your neighbors)

Then, at my command, follow these two instructions:

1. Turn to the person on your left and set that direction as your heading;
2. Take 3 steps forward in that direction.
Thinking about models

- Comparing and contrasting real world “participatory simulations” and the same activities within a computer model.
Supporting Growth in CT

• Rich computational environments allow users to “look under the hood” and see how it works.
 ▫ *Ex) Scratch for creating animations that respond to user input*
 ▫ *Ex) StarLogo TNG for creating models of complex systems*
Use-Modify-Create progression
Modeling and Simulation

- **Agent based modeling**
 - StarLogo TNG (education.mit.edu/starlogo-tng)
 - StarLogo Nova (slnova.org)
 - NetLogo (ccl.northwestern.edu/netlogo)
Making links to mathematics

- Geometry
- Logic
- Probability and Statistics
Comparing mathematical models to agent based models
Basic SIR Model

\[\frac{dS}{dt} = -\beta SI \]
\[\frac{dI}{dt} = \beta SI - \gamma I \]
\[\frac{dR}{dt} = \gamma I \]
You can make these systems of equations REALLY complicated.
Basic SIR Model

```
while toggled
    call wiggle
    call recovery

procedure: wiggle
    + add parameter
    forward 1
    left by random 30 degs
    right by random 30 degs
    return nothing

procedure: recovery
    + add parameter
    if random 10000 <= recovery rate
    set my color to color: blue
    return nothing
```

on collision with Turtle
 do
 if color of collidee = color: red
 if random 100 <= transmission rate
 set my color to color: red
```
Agent Based Model

EpiSims: created at Los Alamos
Challenges encountered

- Integration into existing curricula during the regular school day is difficult.
- Incorporating CS takes too much time. It takes extra time for students to create, innovate, communicate, and collaborate on projects driven by their own interests and questions.
- Getting buy-in of administrators.
- Professional development for teachers.
Integrating “CS in Science”

• 4 curricular modules by Project GUTS for Code.org
  ▫ Introduction to Modeling and Simulation
  ▫ Earth Science – Water resources
  ▫ Life Science – Ecosystems as complex systems
  ▫ Physical Science – Chemical reactions
• Each is a 5 hour “replacement” unit that follows the Use-Modify-Create trajectory
Barriers to overcome:

Time constraints https://www.youtube.com/watch?v=bfgsdyxEzxM
Is what students are learning tested? https://www.youtube.com/watch?v=j2wMZ-3hARo
Getting district buy-in District buy in https://www.youtube.com/watch?v=2icrW3QRkdM
Opportunities afforded by CS in Science

- Student plays role of theorist and experimentalist
- Authentic experience of science, asking questions and making discoveries

Ex) Ecosystem dynamics
   Q: How many different patterns of population growth and death can be found? What are they?
   Q: What is the impact of decreasing the maximum number of plankton in the ecosystem?
   Q: How can I achieve a long lasting ecosystem?
   Q: What is the impact of adding a top predator?
Opportunities afforded by CS in Science

MS-LS2-1. Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem.

MS-LS2-4. Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.

MS-LS2-2. Construct an explanation that predicts patterns of interactions among organisms across multiple ecosystems.
Opportunities afforded by CS in Science

- Supports argumentation from evidence.
- Using models as test beds generates evidence.

Ex) Argument from evidence: is variation in a population necessary before selection can act?

HS-LS4-3: Apply concepts of statistics and probability to support explanations that organisms with an advantageous heritable trait tend to increase in proportion to organisms lacking this trait;

HS-LS4-4: Construct an explanation based on evidence for how natural selection leads to adaptation of populations
Opportunities afforded by CS in Science

• Students who construct their own simulations will display a clear grasp of scientific concepts expected in the NGSS.

Ex) Chemical reactions
  ▫ the conditions under which they occur,
  ▫ the evidence of a chemical reaction,
  ▫ limiting reactants versus reactants in excess, and
  ▫ when chemical reactions stop.
Demonstration
DISCUSSION

• Q: Can today’s STEM teachers become tomorrow’s Computational Thinking enabled teachers who understand and can facilitate students in these practices?

• Q: At the end, say “now that you’ve heard about CT and how it can be integrated in Science through M&S, what misconceptions do you think your administrator or other teachers have about CT?”

• Q: Do these misconceptions create barriers to implementation, and if so, how can they be addressed? Diffused? Knocked down.

• Think of your curriculum - are there units or activities that you do now that you think could be strengthened through integrating computational thinking, modeling and simulation.
Thank you!

Josh Caldwell, Code.org  josh@code.org
Jennifer Childress, Achieve  JChildress@achieve.org
Irene Lee, MIT  ialee@mit.edu

Websites:
  Code.org/curriculum/science
  Nextgenscience.org
  Projectguts.org