Federal Agency Funding Opportunities
Within and Beyond NSF

June 2, 2016
Washington, DC
David B. Campbell, Ph.D.
Program Director
Division of Research on Learning in Formal and Informal Settings
Directorate for Education and Human Resources
National Science Foundation
Within NSF:
Karen King: ECR, CS for all
Arlene de Strulle: STEM+C
Robert Russell: AISL, ITEST, Cyberlearning

Beyond:
Elizabeth Albro and Christina Chhin
United States Department of Education

Tony Beck, National Institutes of Health
<table>
<thead>
<tr>
<th>EHR Division</th>
<th>Learning and Learning Environment</th>
<th>Broadening Participation in STEM</th>
<th>STEM Professional Workforce</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research on Learning (DRL)</td>
<td>ECR - Learning DR-K12 AISL ECR + REAL =FY2015</td>
<td>ECR includes: • Research on Gender in Science and Engineering (GSE) • Research in Disabilities Education (RDE)</td>
<td>STEM+C Partnerships for the 21<sup>st</sup> Century formerly Math and Science Partnership ITEST - Innovative Technology Experiences for Students and Teachers</td>
</tr>
<tr>
<td>Graduate Education (DGE)</td>
<td>Project and Program Evaluation (PPE) Building Community & Capacity in Data (BCC)</td>
<td>ECR- STEM Professional Workforce CyberCorps: Scholarship for Service (SFS) Graduate Research Fellowship (GRF) National Research Traineeship (NRT)</td>
<td></td>
</tr>
<tr>
<td>Undergraduate Education (DUE)</td>
<td>ECR- Learning Environment Improving Undergraduate STEM Education (IUSE)</td>
<td></td>
<td>Advanced Technological Education (ATE) Robert Noyce Teacher Scholarship Program S-STEM Scholarship Program</td>
</tr>
</tbody>
</table>
EHR Core Research (ECR) across all themes: EHR invests in foundational research for the strategic improvement of STEM education.
<table>
<thead>
<tr>
<th>EHR Division</th>
<th>Learning and Learning Environment</th>
<th>Broadening Participation in STEM</th>
<th>STEM Professional Workforce</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research on Learning in Formal and Informal Settings (DRL)</td>
<td>Core Research & Development (ECR)</td>
<td>ECR* includes:</td>
<td>STEM+C Partnerships for the 21st Century formerly Math and Science Partnership</td>
</tr>
<tr>
<td></td>
<td>DR-K12- (Discovery Research K-12)</td>
<td>• Research on Gender in Science and Engineering (GSE)</td>
<td>ITEST - Innovative Technology Experiences for Students and Teachers</td>
</tr>
<tr>
<td></td>
<td>AISL- Advancing Informal STEM Learning</td>
<td>• Research in Disabilities Education (RDE)</td>
<td>*ECR + REAL= FY2015</td>
</tr>
</tbody>
</table>
Program Focus in DGE

<table>
<thead>
<tr>
<th>EHR Division</th>
<th>Learning and Learning Environment</th>
<th>Broadening Participation in STEM</th>
<th>STEM Professional Workforce</th>
</tr>
</thead>
</table>
| Graduate Education (DGE) | Project and Program Evaluation (PPE)/Promoting Research and Innovation in Methodologies for Evaluation (PRIME) | • EHR Core Research: Workforce Development (ECR)*
• SFS- CyberCorps: Scholarship for Service
• GRF - Graduate Research Fellowship
• NRT- National Research Traineeship
• INSPIRE-Integrated NSF Support Promoting Interdisciplinary Research and Education
• NSF Innovation Corps (I-Corps) | |
Program Focus in HRD

<table>
<thead>
<tr>
<th>EHR Division</th>
<th>Learning and Learning Environment</th>
<th>Broadening Participation in STEM</th>
<th>STEM Professional Workforce</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Resource Development (HRD)</td>
<td>• ADVANCE-Increasing the Participation and Advancement of Women in S & E careers
• AGEP-Alliances for Graduate Education and the Professoriate
• HBCU-UP-Historically Black Colleges and Universities Undergraduate Program
• TCUP- Tribal Colleges and Universities Programs</td>
<td>*Core Research & Development (ECR)
LSAMP- Louis Stokes Alliances for Minority Participation</td>
<td>• PAEMST- Presidential Awards for Excellence in Mathematics and Science Teaching
• PAESMEM- Presidential Award for Excellence in Science, Mathematics and Engineering Mentoring
• CREST- Centers of Research Excellence in Science and Technology</td>
</tr>
</tbody>
</table>
Program Focus in DUE

<table>
<thead>
<tr>
<th>EHR Division</th>
<th>Learning and Learning Environment</th>
<th>Broadening Participation in STEM</th>
<th>STEM Professional Workforce</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undergraduate Education (DUE)</td>
<td>Core Research & Development (ECR)</td>
<td>Advanced Technological Education (ATE)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IUSE- Improving Undergraduate STEM Education</td>
<td>Robert Noyce Teacher Scholarship Program (NOYCE)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>S-STEM = Scholarship in STEM Program</td>
<td></td>
</tr>
</tbody>
</table>
Graduate Research Fellowship Program

NSF Research Traineeship Program

CyberCorps Scholarship for Service

EHR Core Research: Workforce Development

Project and Program Evaluation
STEM + Computing Program

STEM+C

- Integrating Computing in K12 STEM Education
- Advancing Computer Science in HS
- Expanding Research on Broadening Participation in Computing
By integrating computing in STEM teaching and learning, the program seeks to:

- Effect the way STEM is taught
- Improve the understanding of STEM through creative scientific exploration made possible by computational approaches
- Expose students to the effectiveness of using computational approaches to solve real world problems in STEM fields
- Prepare teachers to use computational thinking and computational approaches in their practice
Proposals should:

- Emphasize R&D on the integration of computing in one or more STEM disciplines
- Have interdisciplinary collaboration with computing
- Seek to advance new models for teaching and learning, innovative courses, curriculum, course materials, and R&D on new pedagogical strategies and environments that advance integration of computing in STEM disciplines.
Examples of research questions:

✓ What are the strategies and tools needed for developing computing skills within specific STEM disciplines for teachers and/or students?

✓ How might strategies need to be modified for different disciplines?

✓ How do students acquire skills in the use of computing methods and computational ways of knowing within a specific K-12 learning environment?

✓ What teacher education courses need to be modified or PD offered for preparing teachers to cultivate computing skills?
Integration of Environmental Chemistry and Computing to Advance Evidence-based Reasoning, Problem Solving, and Computational Thinking in Middle School Students
Award Number: 1543022
Principal Investigator: Deborah Tatar
Organization: Virginia Polytechnic Institute and State University

Integrating Computational Thinking and Environmental Science: Design Based Research on Using Simulated Ecosystems to Improve Student Understanding of Complex System Behavior
Award Number: 1543144
Principal Investigator: Stephen Uzzo
Organization: New York Hall of Science

Research on Effects of Integrating Computational Science and Model Building in Water Systems Teaching and Learning
Award Number: 1543228
Principal Investigator: John Moore
Organization: Colorado State University

Research on the Development of Computational and Systems Thinking in Middle School Students through Explorations of Complex Earth Systems
Award Number: 1542954
Principal Investigator: Gillian Puttick
Organization: TERC Inc.

Spatial Thinking Curriculum for Building Computational Skills in Elementary Grades K-5
Award Number: 1543204
Principal Investigator: Steven Moore
Organization: University of Redlands