LOOPS Logging Opportunities in Online Programs for Science

Kimberle Koile The Concord Consortium

What is LOOPS?

- 5-year NSF-funded program, in year 2
 - Concord Consortium, Univ CA Berkeley, Univ Toronto
 - focus on 8th grade science
- Investigates how technology can support formative assessment
 - providing teachers with timely data about student interactions and learning
 - enabling teachers to modify instruction to improve learning

Research Questions

- What LOOPS data gives insight into student learning?
- How can LOOPS evidence help teachers make instructional decisions?
- How can LOOPS instructional features impact student learning?

Data and Feedback

- Log inquiry activities
 - Students interact with computational models, sensors, graphs, drawing tools
- Give teacher feedback
 - View and select student work, histograms, progress
- Teacher tailors instruction
 - During class, between classes, between uses of curriculum unit

Teacher Tools

- Pick N
 - students submit work in class
 - teacher chooses several for anonymous sharing

Motion prediction graphs, 8th grade Albany MS

Teacher Tools (cont'd)

- Poll
 - students submit answers to multiple choice questions
 - teacher gets and can display a histogram of responses

8th grade student work from Albany MS

Teacher Tools (cont'd)

Student Progress

8th grade student work from Foothill MS

Current Status

- Classrooms: CA Albany MS, Foothill MS, Martinez JHS, Pine Hollow MS
- Curriculum: Force & Motion, Chemistry
 - Motion: motion probe activities for velocity
 - Force: space rescue game
 - Chemistry: simulations, visualizations for chemical reactions

Student explores visualization.

Teacher chooses student responses.

INK-12 Interactive Ink Inscriptions in K-12

Kimberle Koile

MIT Center for Educational Computing Initiatives

INK-12: Interactive Ink Inscriptions in K-12

• NSF exploratory

• Pls: KKoile

Andee Rubin

TERC

• Evaluator: David Reider

• 2-years, Sept 2008 to Sept 2010

INK-12: Interactive Ink Inscriptions in K-12

- Explore in science and math:
 - *Inscriptions:* What kinds of "ink" inscriptions are useful?
 - Classroom communication: How can technology support in-class communication between teachers and students?
 - Inclusion: Do we see differences in technology use with students having different learning needs?
- Technology: set of Tablet PCs
 - *pen-based interface:* draw and write to create "ink" inscriptions
 - wireless communication: share in-class work anonymously

INK-12: Fourth and eighth graders

- Cambridge, Lexington, Waltham; in each district:
 - two 4th grade
 - one 8th grade science, one 8th grade math
 - total of 12 teachers

Fourth grade in Lexington

- Fiske (22 students)
- Bridge (21 students)

Our Crayfish Data

name	M/F	weight (g)	length (cm)
Money Maker	М	18	7.5
Mr. Extreme	М	20	8.5
Philip	М	18	8.5
Old Feisty	М	18	8.5
Hermes	F	16	7.0
Bobby	М	18	7.5
Tommy	М	16	7.5
Tickles	М	16	7.5
Twitch	М	16	7.0
Small Claws	F	17	8.5
Bobbert	М	17	7.5
Waver	М	23	9.0
Snapper	М	18	7.0
Hurt Leg	М	18	7.0
Sir Bonkers	М	21	7.5
Sir Edward Henry "Eddie"	М	23	8.5
Night Crawler	М	22	8.5

Fourth grade science (no technology) Fiske, Lexington

Fourth grade science (with tablets) Fiske, Lexington

Our Crayfish Weights Let's make a line plot:

Teacher: The children absolutely loved it for many reasons but I believe that once they sent me their info and I displayed it on the board, they were more likely to pay attention because their work was coming. They also liked to see what others came up with.

Teacher: Once children are engaged in such a way, they are motivated to participate, and they care about doing their best work because it will be displayed for all to see. I absolutely loved what it does for my teaching.

Fourth grade science Bridge, Lexington

Fourth grade Baldwin, Cambridge

Fourth grade Baldwin, Cambridge

Special needs: some students more distracted, some less

Student figured out that he could communicate with the teacher...

Fourth grade Baldwin, Cambridge

Special needs: some students more distracted, some less

Eighth grade science Clarke, Lexington (24, 23, 21, 16 students) 2 days in each class

- a. Draw a simple diagram of a racing car in your Student Answer Booklet.b. Using your diagram, draw arrows to show
- how the forces of thrust, drag, and gravity act on the racing car as it moves forward on a racetrack. Label each arrow as thrust, drag, or gravity.

- a. Draw a simple diagram of a racing car in your Student Answer Booklet.
- b. Using your diagram, draw arrows to show how the forces of thrust, drag, and gravity act on the racing car as it moves forward on a racetrack. Label each arrow as thrust, drag, or gravity.

Eighth grade math Clarke, Lexington (28, 27, 24, 11 students) 2 days in each class

LOOPS and INK-12

- Ideal for:
 - Immediate feedback, sharing of student work
 - Many subject areas

• Need:

- Streamlined/automatic set-up
- Teacher training in using immediate feedback
- Teacher reports with summary info
 - e.g., Inquiry index: infer learning from actions
- Teacher mobility
- Support of differentiated instruction

Potential obstacles:

- Lack of tech support in the classroom
- Lack of good networking
 - * LOOPS is server-based, requires internet
 - * INK-12 uses peer-to-peer for now

