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Abstract Field placements serve as the traditional ‘clinical’ experience for prospective

mathematics teachers to immerse themselves in the mathematical challenges of students.

This article reports data from a different type of learning experience, that of a clinical

simulation with a standardized individual. We begin with a brief background on medical

education’s long-standing use of standardized patients, and the recent diffusion of clinical

simulations to teacher and school leader preparation contexts. Then, we describe a single

mathematics simulation and report data from prospective mathematics teachers’ interac-

tions with a standardized student on the issue of iconic interpretation. Findings highlight

teachers’ diagnostic, explanatory, mathematical, and instructional repertoires, as they

guide a standardized student through two different graphing problems. Implications focus

on the trends in teachers’ instructional decisions, contextualized explanations, and the use

of clinical simulations to enhance mathematics teacher development.
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Introduction

Field placements serve as the traditional ‘clinical’ opportunity for prospective mathematics

teachers to engage in the challenges presented in teaching mathematics to students. This

clinical standard is not standard, though, and results in highly variable experiences. When

in secondary classrooms, our prospective teachers (PTs) experience an array of challenges

that as teacher educators, we cannot predict, control, or see frequent evidence of how our

novice teachers navigate them. In teacher education, our use of varied field placements

results in varied learning outcomes, leaving virtually no common denominator for novice

teachers and teacher educators to work from.

This article outlines a different form of clinical preparation. We describe a clinical

mathematical simulation, the resulting data, and the implications of that experience on

mathematics teacher preparation. We begin by reviewing the use of situated learning in

medical education, and the diffusion of medical simulations to subject-specific teacher

education contexts. We outline our first clinical simulation for mathematics PTs and

examine data on how each PT engaged in the same, shared problem of practice. We

conclude with implications of clinical simulations on enhancing mathematical teacher

preparation.

Theoretical and conceptual foundations

In 1963, Howard Barrows implemented the first medical simulation with his cohort of

neurology medical residents at the University of Southern California (Barrows and

Abrahmson 1964). The crux of Barrows’ work was the standardized patient—a healthy

individual carefully trained to present distinct symptoms and communicate questions/

concerns to medical professionals in training (Barrows 1987, 2000). From that beginning,

the use of standardized patients in medical education diffused regionally and nationally.

Today, medical students participate in both formative and summative Observed Structured

Clinical Examinations (OSCEs) with multiple standardized patients as part of their pro-

fessional training (Coplan et al. 2008; Hauer et al. 2005).

Beginning in 2007, Dotger began designing and implementing clinical simulations

across teacher and school leader preparation contexts. Early simulations targeted problems

of practice that teachers and school leaders commonly encounter. In each simulation, a

prospective teacher or leader would interact with a standardized individual—an actor

deliberately scripted and carefully trained to simulate a student, paraprofessional, parent,

community member, or district leader. Clinical simulations within teacher and school

leader preparation contexts are anchored by cognitive development and situated cognition

frameworks (Brown et al. 1989; Kohlberg 1969; Korthagen and Kessels 1999; Lave and

Wenger 1991; Mead 1934; Piaget 1959; Putnam and Borko 2000; Vygotsky 1978; Wenger

1998). As summarized by Reiman and Peace (2002), these frameworks share (a) the

assumption that knowledge/meaning is constructed by individuals through authentic

experience, (b) the recognition of cognitive disequilibration, (c) an emphasis on disposition

and skill development, as learners’ experiences, interpretations, and professional reasoning

synthesize over time (von Glasersfeld 1989), (d) the belief that genuine professional

growth requires a supportive, yet progressively challenging environment, and (e) the

importance of social interactions and the social negotiation of meaning (Lebow 1993) as

individuals engage within complex professional environments.
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To illustrate these theoretical assumptions, consider the William Mills simulation

(Dotger 2013). This particular simulation illuminates specific socioeconomic contexts and

the common worries of parents/guardians regarding post-secondary opportunities for their

children. Reflecting the theoretical assumptions, the Mills simulation is intended to be a

disequilibrating learning experience, as each PT individually faces Mr. Mills’ questions

about his son’s academic progress, sees him express frustration with his son’s performance,

and is witness to Mr. Mills hopes and worries for his son’s ‘‘opportunities in this world.’’

The Mills simulation provides PTs opportunities to speak from data in conference with this

concerned father, demonstrate empathic response patterns, and practice co-constructing

plans of action and communication. In recognition that PTs develop through progressively

challenging situations, the Mills simulation is one in a deliberately scaffolded series of

clinical simulations that increase in challenge. The video-informed debriefings that follow

each clinical simulation seek to both support the PT in his/her successes in the simulation,

while also challenging the PT to identify a plan for improved action. Finally, all clinical

simulations rely on standardized individuals and focus on data and dialogue, recognizing

that teacher effectiveness hinges on one’s ability to communicate clearly with students,

parents, and colleagues across complex scholastic environments.

In 2009, Dotger and colleagues began shifting design attention to how subject-specific

challenges come to life through standardized students in clinical simulations. Through a

National Science Foundation Discovery Research K-12 (DR-K12) exploratory grant, seven

secondary mathematics and science simulations were designed. Interviews with twenty-

five senior secondary mathematics and science teachers yielded problems of practice that

mathematics and science teachers commonly face in the induction years of teaching. For

example, senior teachers suggested that simulations be designed around the secondary

mathematics and science themes of graphs and the relationships of variables, genetics,

factoring, probability, natural selection, and fractions. Building from those themes, we also

consulted with mathematics and science teacher educators, who suggested examining these

suggested themes through a lens of student misconceptions. From these building blocks,

we constructed seven clinical simulations and began implementing them with small

cohorts of secondary mathematics or science PTs.

This study examines how PTs engage in a mathematics simulation focused on iconic

interpretation. When a student uses iconic interpretation in understanding a graph, the

student is ‘‘interpreting a graph as a literal picture’’ (Monk 2003, p. 257). For example, a

student using iconic interpretation might see a graph showing the distance over time that a

vehicle traveled as the actual path that the vehicle traveled. This is a common difficulty

that students have in understanding graphs. Researchers have found that ‘‘visuality is a key

source of difficulties’’ when students try to make sense of graphs (p. 257). Being able to

interpret and make sense of graphs is important mathematically. The Common Core State

Standards for Mathematics (CCSSM) states that students should be able to ‘‘graph data,

and search for regularity or trends’’ (National Governors Association Center for Best

Practice 2010, p. 6). While graphing is mentioned in many parts of the CCSSM in relation

to measurement and data, algebra, functions, and modeling, its central place in mathe-

matics is illustrated by the above quote, emphasizing that students must make sense of

problems and persevere in solving them.

Our study of the iconic interpretation simulation is further supported by mathematics

educators’ work in teacher noticing (Francisco and Maher 2011; Jacobs et al. 2010), the

use of multimedia case studies (Masingila and Doerr 2002), and the use of video tools in

mathematics education contexts (e.g., Borko et al. 2008; Santagata and Guarino 2011).
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The manner and degree to which mathematics teachers—across the career span—rec-

ognize, attend to, and engage in teaching and teacher reflection in mathematics education

has more recently been examined as teaching ‘noticing’ (Jacobs et al. 2010). Sherin et al.

(2011) outline several methodologies for examining mathematics teacher noticing. These

include studying what and how teachers notice by using videos of other teachers’

instructional activities, encouraging teachers to engage in retrospective recall (with and

without supporting video) of events in their own mathematics classrooms, and traditional

researcher-inferred connections between the visible actions of the mathematics teachers

and his/her likely efforts in noticing. Using unique teacher point-of-view cameras, Sherin

et al. (2011) extend the work of teacher noticing methodologies through their investigation

of high school mathematics teachers (n = 13) and the video data that each teacher

recorded, marked at the moment of capture, and later reflected on. This study reinforced

the range of teaching thinking, documenting that mathematics teachers noticed and

reflected on general pedagogical actions, student thinking, and mathematics concepts.

Their study highlights the teacher participants’ rationales in recording specific video

segments. For example, some of the segments captured by teachers document divergence

between what the mathematics teacher expected and what he/she actually experienced.

Sherin et al. (2011) connect this particular finding back to cognitive development

assumptions, where illuminating and at times concerning moments (Reiman and Peace

2002) occur when there are apparent disconnects between what one expects and one

actually experiences in the classroom.

Our study is further informed by scholarship on shared mathematical experiences and the

use of video and multimedia tools to support mathematics teacher learning (Borko et al.

2008; Masingila and Doerr 2002). Through a problem-solving cycle (PSC), sixteen mathe-

matics teachers enrolled in a series of workshops on algebraic thinking. Through the

workshops, teachers engage with distinct algebraic problems and then later record them-

selves teaching this same algebraic problem to their respective student groups. The shared

practice is the algebraic problem, while the recorded video provides the lens through which

teachers view their own instructional approaches—and the approaches of their peers—to the

same mathematical concept (Borko et al. 2008). In similar fashion, Masingila and Doerr

(2002) report on the use of multimedia materials (i.e., video case studies, teacher journals,

lesson plans, and student work) on a four-lesson sequence focused around ranking and

weighting data. Participating mathematics PTs (n = 9) identified how one current issue

within their own instructional practice connects to the representations of practice within the

multimedia case study. Thus, the case study becomes the shared, common ground through

which each PT further explores his/her specific mathematical instructional challenge(s).

Through a clinical simulation, PTs share a common thread by each engaging with the

same questions, challenges, or issues (i.e., ‘‘triggers’’) presented by the standardized

individual. In a well-designed simulation, the standardized individual is carefully trained to

adhere to specific protocol (Barrows 1987). The teacher is not directed beyond the simple

encouragement to utilize his/her professional training to appropriately engage in the

simulation. Importantly, though, the teacher educator can tailor this learning experience,

placing emphasis as desired on parent–teacher relationships, students’ social/emotional

needs, or discreet content-specific challenges (Dotger 2013). This helps account for what

PTs otherwise experience through hit and miss field settings, where a few PTs have a

unique learning opportunity with a parent or student, but the majority of PTs do not

(Dotger 2013; Wilson et al. 2001). In both studies above (Borko et al. 2008; Masingila and

Doerr 2002), the authors document a similar rationale, seeking a common shared mathe-

matical practice to experience individually and analyze collectively. Clinical simulations
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build from these studies by presenting a shared problem of practice, that is, (a) live,

engaging, and expects professional responses and (b) a limited, professional interaction

that is bounded to focus both PT effort and reflection. In traditional field placements, PTs

often struggle to untangle and make meaning from the myriad of challenges they face each

day. Clinical simulations provide PTs with opportunities to carefully deconstruct profes-

sional knowledge, instructional strategies, and dispositional approaches. Multiple-angle

video recordings of each PT’s simulation provide a data-informed opportunity for the PT to

initially self-assess what he/she said and did and then later collectively analyze those

practices with peers who faced the same questions, issues, and challenges (Dotger 2013).

Again, we see connections between simulations and past efforts to capture teacher point-

of-view data (Sherin et al. 2011) or efforts to closely analyze teachers’ instructional

decision making through more distant third-person perspectives (Borko et al. 2008;

Masingila and Doerr 2002).

As PTs engage with a standardized student in the iconic interpretation simulation, we

asked the following questions:

• Who assumes responsibility for fostering the instructional dialogue?

• What content or instructional strategies do PT’s employ (in simulation) and/or reflect

(in debriefing)?

• When and how were instructional decisions implemented within the simulation?

The following methodological review outlines the steps we took to investigate these

research questions.

Methodology

In this section, we discuss the design of the iconic interpretation simulation, followed by a

description of how we trained the standardized students. Then, we discuss simulation

implementation and data collection procedures, followed by our steps in analyzing the

resulting video data.

Simulation design

The impetus for this simulation came from our interviews with experienced mathematics

teachers, who suggested one simulation focus on basic graph interpretation and the rela-

tionships between variables. That repeated suggestion was coupled with our own interest in

observing how PTs address iconic interpretation, where a person deciphers a graph by

simply looking at the graph as a picture, instead of understanding the connection between

the variables represented on the x-axis and y-axis.

To foster a live simulation, two sets of documents—a Teacher Interaction Protocol and a

Standardized Individual Protocol—must be carefully designed. The Teacher Interaction

Protocol (TIP) provides each mathematics PT with an appropriate amount of background and

contextual information. Given 1 week before the actual simulation, the intent of this doc-

ument is to provide each PT with enough information to realistically situate oneself within

the simulated environment, but not so much information that it foretells, scripts, or overly

directs the PT on what to do or say when interacting with the standardized student. For this

simulation, the TIP was 1� pages in length. It indicated the PT—in simulation—is a novice

first-year teacher at Pleasantville High School and responsible for five instructional periods,

three of which were Algebra I. In these Algebra I sections, the teacher had recently
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introduced graphs, plotting coordinates on x-axis and y-axis, and interpreting graphed data.

The TIP indicates that the teacher gave two homework problems. The first problem was a

basic height versus time graph, with the data already plotted, and the prompt for the student

to interpret the graphed data. The second homework problem was a basic distance versus

time word problem, with the charge for the student to derive and graph the coordinates. The

final portion of the TIP indicates that the teacher introduced the homework, and in doing so,

noticed that one student (Marcia Taylor) seemed confused. As class concluded, the teacher

spoke briefly to Maria, saying, ‘‘Stop by tomorrow morning if you want and we’ll work on

this homework.’’ This dialogue and the broader TIP give the basic parameters for the

upcoming simulation, where the standardized student, Marcia Taylor, will stop by to consult

with each teacher (i.e., each PT) on the homework.

The second set of documents is the Standardized Individual Protocol (SIP), which

serves as a training guide for the standardized students and differs dramatically from the

TIP given to PTs. While the TIP does not script or direct PTs on what to say or do in the

simulation, each standardized student is carefully trained to adhere with high fidelity to the

details presented in the SIP. Beginning with extensive character-building information, the

SIP describes Marcia Taylor as a ninth grade student at Pleasantville High School, who is

well supported by her parents, heavily involved in junior varsity basketball, and working

very hard to maintain a general ‘‘B’’ average across her seven high school classes. The

purpose of the broad explanation of the Marcia Taylor character is to allow each actor to

‘get in character’ so she may realistically and appropriately respond to a wide variety of

questions the PTs may ask during the simulations.

The second part of the SIP focuses on the verbal and non-verbal triggers that each

standardized student will issue during the simulation. A trigger is a question, statement,

concern, or response spoken by the standardized student to the PT. Triggers may include

non-verbal mannerisms as well, such as sighs, defensive body language and confused facial

expressions. For this simulation, the triggers are structured in conjunction with the two

homework problems and broadly summarized here:

A. An introductory ‘‘I tried the homework, but I don’t know if I got the problems right.’’

B. A display of the first homework problem, and a simple ‘‘Is this right?’’

C. If teacher notes interpretation is problematic, then follow-up questions:

a. I’m confused, what did I do wrong?

b. But I thought that when we interpret a graph, we are supposed to interpret what it

looks like!

D. Transition to second homework problem, with trigger, ‘‘This is my graph. How did I

do?’’

a. Student response if teacher asks prompting/guiding questions.

E. Final trigger asking for general suggestions for interpreting graphs.

Standardized individual training

At the request of the first author, the Director of SUNY Upstate Medical University’s

(UMU) Clinical Skills Center recruited three actors from local university and community

theater organizations who were over the age of 18, but could still authentically present as

the 15-year-old high school student, Marcia Taylor. On a dedicated morning, the
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research team and the Director of the Clinical Skills Center gathered with these actors to

train them to become Marcia Taylor during a simulation with each PT. The SIP

grounded the training session for this group of standardized individuals. The first author

served as the primary facilitator in this 1.5-h training session, guiding the actors through

the four-page SIP. Two-thirds of the training session was dedicated to the triggers for

this simulation, accompanied by description and explanation by the second author on

how the actors should reference the attempted homework problems. During this portion

of the training, the authors collectively highlighted for the actors the misconceptions and

errors that Marcia has made, noting the mistakes in logic that should be reflected as they

enact her in simulation.

Implementation and data collection

On a designated morning, the mathematics PTs gathered at UMU’s Clinical Skills Center.

These PTs (n = 8) were enrolled in a methods course and were participating in this

simulation as a non-evaluative course requirement. There were six female students and two

male students. Two of the female students were graduate students, and the remainder were

undergraduate students. Upon arrival, the PTs were provided a 10-min orientation to the

Clinical Skills Center, a facility of 22 medical simulation rooms, modeled to look and

function exactly as a general physician’s examination room. The only difference between

these simulation rooms and a common medical exam room is the presence of two multi-

angle cameras and two microphones mounted in the ceiling. These recording technologies

feed audio and video data directly to the Clinical Skills Center’s control room and servers,

resulting in a basic video file that serves as a performance assessment tool for the PTs and

reporting researchers.

After orientation, three simulations were run simultaneously. Outside of each simulation

room is a computer. Before beginning their simulations, PTs logged into their respective

computers and responded to three pre-simulation questions. These questions inquired as to

the PTs’ goals/objectives, expectations, and any questions/concerns. After the PTs sub-

mitted their responses, a UMU staff member in the control room turned on the cameras and

microphones in each simulation room. Each PT entered his/her simulation room, where a

table and two chairs had been placed. On the table, a small dry-erase white board and

markers were present. PTs were given approximately 30 s before a knock at the door

signaled that Marcia Taylor had arrived for help with her math homework. From that point,

the PTs were entirely responsible for what occurred as they engaged with Marcia Taylor.

As PTs concluded their respective interactions, they exited the simulation rooms and

turned off their cameras by logging out of their computers. Of note, while the PTs engaged

in their simulations, the second author viewed, from the monitor room, live portions of

each PT’s simulation.

Each PT was escorted to a computer laboratory to watch video of his/her respective

interaction with Marcia. After reviewing their data, PTs had approximately 15 min of

unstructured time, but were specifically asked not to discuss the simulation with each other

until the debriefing session. Once all had completed the simulation and data review pro-

cesses, the second author guided the PTs through a semi-structured debriefing. Focusing on

each homework problem that Marcia presented, the researcher asked the cohort to describe

and reflect on their approaches and strategies toward Marcia’s questions and misconcep-

tions. During the debrief, a whiteboard and markers were used to recreate mathematical

approaches and examples given earlier in simulation.
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Data analysis

This study resulted in a significant amount of qualitative data, including PTs’ pre-

simulation responses, videos of their interactions with Marcia Taylor, and the whole-

group debrief session. Our analysis of these data used the primary code constructs of a

PTs’ diagnoses, explanations, mathematics-specific, and general teaching repertoires

(Clermont et al. 1993; Magnusson et al. 1999). To begin, the third author transcribed the

PTs’ individual simulation videos and the whole-group debriefing video. Then, the

authors independently open coded three of the simulation transcripts. This broad listing

of sub-codes was then categorized under the appropriate primary codes. For example, for

the first homework problem, Marcia provides a written interpretation of the graph. We

began with the diagnosis code construct, knowing that we would code whether or not

each PT recognized Marcia’s iconic interpretation. There were two sub-codes under the

diagnosis construct, applied when each PT either agreed with Marcia’s written inter-

pretation or, alternatively, recognized the error in her interpretation. As a second

example, though, consider the more complex explanation code construct. As we initially

open coded a subset of transcripts, six different explanations emerged as PTs worked

with Marcia on the first homework problem. PTs provided explanations that focused on

height, point of origin, and alternative interpretations and were ‘within the context’ of

the explanation provided by Marcia. Thus, our explanation code construct lists all dif-

ferent approaches PTs used when explaining Problem 1 to Marcia. Table 1 shows the

broader simulation code list.

We applied the complete list of primary and secondary codes to the three predominant

triggers in this simulation: where Marcia presents her attempt at the first homework

problem; she questions her attempt on the second homework problem; and concludes by

asking for general suggestions when interpreting graphs. After each author independently

coded all transcripts, he/she then constructed a data summary for each PT. These sum-

maries provided the research team with a format to examine PTs’ responses across trigger,

instead of looking at a single PT’s responses to all the triggers. Data are reported below in

consideration of each trigger.

Findings

After the knock at the door, Marcia entered and immediately issued her first trigger,

indicating she’s unsure of how she did on her homework. As expected, each PT welcomed

Marcia into the room with greetings similar to, ‘‘Okay, come in’’ or ‘‘No problem.’’ Each

‘‘Marcia’’ sat down and presented her homework. The first significant trigger focuses on

Marcia’s presentation of her first homework problem, with the question, ‘‘Is it right?’’

Figure 1 shows Problem 1, and Marcia’s written interpretation.

Recall that simulation data were coded across four primary constructs: diagnosis,

explanation, mathematics repertoire, and teaching/instructional repertoire. In consider-

ation of this first homework problem, we present the data associated with PTs’ diagnoses,

explanations, and mathematical repertoires. More often, a PT’s diagnosis of Marcia’s

interpretation was closely associated with his/her follow-up explanation, and both included

mathematical terms, strategies, and representations. Thus, for clarity, we present those data

in association with each other.
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Table 1 Codes for simulation triggers

Trigger #1

[T1D] Diagnosis

T1D1: Agrees with student’s interpretation of graph and does not indicate
or prompt student to think of potential flaw with this interpretation

T1D2: Recognizes potential flaw in student’s interpretation

[T1E] Explanation

T1E1: Explains why graph reaches maximum and then decreases

T1E2: Focuses on height of graph at the start (T = 0)

T1E3: Confuses two meters with being short (agrees with student)

T1E4: Interprets graph within context given by student

T1E5: Explains thinking process

T1E6: Explains why there could be another interpretation of the graph

T1E7: Explains graph within teacher’s context

T1E8: Explains why the graph does not represent a person walking uphill

T1E9: Confuses constant rate with zero slope

T1E10: Confuses meaning of starting point

[T1MR] Mathematics Repertoire

T1MR1: Graph T1MR13: Compare

T1MR2: Unit T1MR14: Motion

T1MR3: Height T1MR15: Projection

T1MR4: Time T1MR16: Representation

T1MR5: Meters T1MR17: Point

T1MR6: Curve T1MR18: Interpretation

T1MR7: Slope T1MR19: Path

T1MR8: Positive T1MR20: Plot

T1MR9: Negative T1MR21: Constant/
straight line

T1MR10: Increasing/decreasing T1MR22: Direction

T1MR11: Distance/far T1MR23: Meters per
second (rate)

T1MR12: Axis/axes T1MR24: Vertex/
maximum/minimum

[TR] Teaching Repertoire

TR1: Asks a question

TR2: Uses repetition

TR3: Uses textbook/outside materials

TR4: Corrects student’s incorrect response

TR5: Gives new/revised language to student

TR6: Uses a visual/diagram/drawing

TR7: Interprets student’s response

TR8: Reads problem

TR9: Reads student’s solution

TR10: Scaffolds student’s thinking

TR11: Confirms student’s response

TR12: Questions student’s response

TR13: Prompts student’s action
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Table 1 continued

TR14: Offers student a learning strategy (e.g., mnemonic, starting point,
steps to consider/use, underlining/highlighting, draw a picture)

TR15: Reduces content down to essential components

TR16: Checks for student’s understanding

TR17: Praise or acknowledgment

Trigger #2

[T2D] Diagnosis

T2D1: Agrees with student’s graph

T2D2: Recognizes error in student’s graph

[T2E] Explanation

T2E1: Explains that graph starts at (0,0)

T2E2: Explains why section of graph where person is stopped should be
horizontal

T2E3: Explains other parts of the graph

T2E4: Corrects student’s incorrect response

T2E5: Clarifies which coordinates correspond to time and distance

T2E6: Explains strategy for creating graph

T2E7: Explains thinking process

T2E8: Adds contextual information

T2E9: Demonstrates some confusion about constant speed

[T2MR] Mathematics repertoire

T2MR1: Far T2MR18: Constraints/
factors

T2MR2: Distance T2MR19: Direction

T2MR3: Coordinate(s) T2MR20: Line

T2MR4: x T2MR21: Displacement

T2MR5: y T2MR22: Visualize

T2MR6: Graph T2MR23: Negative/
positive

T2MR7: Point/starting point T2MR24: Independent
variable

T2MR8: Add/plus T2MR25: Dependent
variable

T2MR9: Miles T2MR26: Axis/axes

T2MR10: Seconds/minutes/time T2MR27: Path

T2MR11: Position T2MR28: Closer/farther

T2MR12: Straight line/horizontal T2MR29: Interpret/
interpretation

T2MR13: Calculate T2MR30: Plot

T2MR14: Fast T2MR31: Slope

T2MR15: Constant speed T2MR32: Equation

T2MR16: Miles an (per) hour (rate) T2MR33: Increasing/
decreasing

T2MR17: Representation T2MR34: Vertex/
maximum/minimum

B. Dotger et al.

123



Problem 1: ‘‘…how the ball would travel’’

Five of the eight PTs offered an affirmative diagnosis of Marcia’s interpretation, essentially

indicating that she was correct. As Marcia read aloud her graph interpretation, Springer

responded with an initial ‘‘Mmmhmm, definitely,’’ indicating that Marcia’s interpretation

was correct. Just a few moments later, Marcia clearly stated the challenge of iconic

interpretation and students’ common misconception, saying, ‘‘… when we’re interpreting

graphs, we’re supposed to look at what it looks like right (motioning to the arc on the

graph)?’’ Springer confirmed Marcia’s literal interpretation:

S: mmmhmm, yeah … so we have a height (pointing to y-axis) so the ball travels up,

up, up (pointing to arc with pencil) and then all the way back down over the time

(motioning to x-axis). So it starts right when you shoot the ball, so as soon as the ball

leaves your hand, it goes up, up, up, then goes through the basket ….

Similar to Springer’s response, two other PTs used visualization in their response to

Marcia’s interpretation. Focusing on the starting point of the graph, Pastle explained, ‘‘…
so we’re starting at two meters, so its obvious we’re not starting at zero. So what are we

kind of thinking as like the visual interpretation of this going … what does the two meters

represent?’’ Marcia replied that two meters might represent a middle school student

shooting a basketball: ‘‘um maybe someone could be really short ….’’ Pastle agreed with

Marcia, confusing two meters with ‘short’ by saying, ‘‘Yeah, maybe we could consider it

like maybe like a middle school student.’’ [Note that using metric units was perhaps an

added layer of complexity that was not helpful. We did not have a goal of PTs addressing

student understanding of metric units. We assumed the metric unit would be a non-issue,

which it was except for this instance.] Aligning with Pastle’s visualization response,

Fig. 1 Problem 1
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Batista also agreed with Marcia’s interpretation and similarly cued into the starting point of

the graph: ‘‘So I think that this is a good example, ‘cause you noticed that it was two meters

off the ground and it didn’t start at the ground. ‘Cause if it was off the ground, then you’d

have to think of a different example.’’

Two other PTs offered affirmative diagnostic comments, but qualified their diagnoses.

Their qualifications served as extensions to contexts beyond that provided in Marcia’s

interpretation. Such extensions then provided room for a closer examination of the data

points in the graph itself. In response to Marcia’s interpretation, Henley noted, ‘‘Okay,

that’s a good start.’’ As she continued, though, Henley did not counter Marcia’s inter-

pretation, but instead qualified her affirmative ‘good start’ with an extension comment that

called for an interpretation more closely associated with data points. Henley indicated,

H: So, I think you got the main point that it could be like a ball … how it travels …
and um, I was expecting or hoping a little bit more … that you would tell me a little

bit more saying time and when does the ball fall or when does it hit the vertex or

highest point … um, a little bit more I had hoped. But okay, since you have written

this, let’s go from here.

Another PT, Jordan, technically offered a confirmation of Marcia’s interpretation with his

initial ‘‘Okay, yeah’’ when she read aloud her interpretation. When Marcia asked, ‘‘Is this

right?,’’ Jordan offered a significant qualification by saying, ‘‘Um, I mean there’s no really

right answer … just your own interpretation.’’ From there, Jordan engaged in an

explanation initially grounded in the three-point basketball context proposed by Marcia.

While still operating in that context, Jordan explained another way to visualize this graph:

J: If you want to stick with basketball … pretend I have a ball (stands up and motions

as if he’s throwing the ball with force to the ground) and I just throw it at the ground.

It’s gonna bounce up and its gonna bounce down. So, if I throw the ball and as soon

as it hits the ground, I (start) a timer, and as time ticks on, it goes up (motioning with

hand), and then it comes back down, what is that graph gonna look like do you think?

One PT offered a contrast to Marcia’s interpretation of the first homework problem,

indicating that her interpretation was not quite ‘right.’ Ford began by directing Marcia’s

attention to the axes and their labels. As Marcia confirmed that time and height are the

respective x-axis and y-axis, Ford reminded Marcia that measurements of height focus on

objects that move up and down. Ford followed this reminder with an important question,

by asking, ‘‘… but when you’re looking at a person shooting a 3-pointer, is there anything

else that’s changing … like are there any other aspects of the basketball’s position that’s

(sic) changing besides just the height?’’ Marcia was unsure how to respond, so Ford

presented a clarifying question that challenged Marcia to visualize, ‘‘So, when you shoot a

3-pointer, are you like standing right underneath the hoop?’’ Marcia answered with the

obvious, ‘No,’ and Ford followed up with an important, directing question, ‘‘So, it (the

basketball) was thrown, and then which direction would it be thrown in?’’ Here, Ford has

asked Marcia to find the data on direction or distance, which are not represented in the

graph. Marcia realized this and indicated that the direction the ball would be thrown in

would be ‘up.’ Ford confirmed, ‘‘It would just be thrown up because the height is going up

and its coming back down and hitting the ground.’’ In accordance with the SIP, Marcia

presented the misconception clearly, ‘‘Oh, cause I thought when we were supposed to

interpret graphs … we were supposed to interpret what it looked like.’’ Ford’s response

was conclusive: ‘‘… if this (graph) was like the path of an object, then that (interpretation)
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would be completely right, but this is just … you have to look at what the axes are labeled

… ‘cause its height vs. time.’’

Problem 2: Determine coordinates; construct graph

The second significant trigger in this simulation centered on the second homework prob-

lem. Figure 2 shows this problem, along with the coordinates and graph that Marcia

constructed.

Note that the coordinates and graph are incorrect. Marcia has made an error by

assigning a value of ‘‘0’’ in the third set of coordinates (60, 0), when the coordinates should

actually be (60, 10) in accordance with the word problem. In the problem, Marcia read that

the driver stops traveling and is talking on his cell phone for 30 min. She interpreted this as

‘‘0’’ on the y-axis representing distance. During those 30 min, it is true that the driver did

not travel any additional distance on his trip. However, the driver did not regress, which is

what Marcia mistakenly plotted on her graph with the ‘‘0.’’ Like the first trigger, the data

for this trigger were coded within the four primary code constructs. We now turn attention

to the PTs’ diagnostic, explanatory, and mathematical repertoires when working with

Marcia on this second problem.

All eight PTs identified Marcia’s error early in the discussion of this homework

problem. Their diagnoses typically occurred through a sentence-by-sentence evaluation of

the word problem and its graphic representation. Batista’s (B) interaction with Marcia

(M) serves as an exemplar of this diagnostic interaction:

B: ‘‘Okay. (reading). A car leaves a parking lot and travels 10 miles in 30 min. Okay, so

let’s just underline that. The driver stops to talk for 30 min. So, when the driver stops,

what is his distance?

M: Uh, he’s stopped.

Fig. 2 Problem 2
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B: Right. So, how far can you travel when you stop?

M: You can’t.

B: So it’s …
M: Uh … so its zero, right?

B: Yeah.

M: ‘Cause you wouldn’t travel.

B: Right. So, it’s zero miles when he stops (reading). Then, the driver restarts and travels

for another 20 miles in 60 min.

M: mmmhmm.

B: (Reading). Construct the coordinates. Okay, we have zero, ‘cause that’s the starting

point.

M: mmmhmm.

B: Good, and then you traveled for 30 min and you went 10 miles.

M: mmmhmm.

B: The driver stops to talk on his phone for 30 min. Okay, so you got 30 min, but you

said he went negative 10 distance.

M: Like backwards?

B: Yeah.

M: Oh.

B: So what should this be? What should that point be instead?

M: It should stay the same?

B: Right, so it should be … yeah 10 ….’’

While each PT correctly identified Marcia’s mistake, their explanations took different

forms. Most PTs followed a diagnosis of the mistake by explaining why that portion of the

graph would be horizontal, rather than going back to a y-value of 0. Consider Sidley’s

remarks: ‘‘He’s not moving any closer or farther away from the parking lot so for those

30 min, his distance is just going to stay fixed. So it’s just gonna be a straight line across

(gesturing on graph with hand to represent a horizontal line).’’

As their explanations continued, PTs encouraged Marcia to identify variables and

clarify the coordinates as two strategies for creating graphs. In making these suggestions,

Jordan referenced both homework problems:

J: Yeah, the biggest thing when it comes to all graphs … not just the parabola which

is what this is called (pointing to Problem #1) … is I always want to identify what the

variables were …. So in this case (Problem #2), I would look at this and say, I know

my two variables are …

Batista took this strategy one step further, by gently interrogating Marcia on the

coordinates and how they align to the axes. Note, though, that in this interaction, Batista

(B) briefly confirmed Marcia’s incorrect ‘‘fix’’ of the x-coordinate, before addressing this

error:

B: Okay, so which coordinates do you have to fix now in your coordinates?

M: Uh, 10 would stay the same, right? So, it would be the ‘x’ that I would have to fix?

B: mmmhmm

M: Okay.

B: So which one? Well …
M: This one.

B: No, the ‘x’ is the same.

M: Oh, ‘y’…
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B: Yeah, ‘cause this is ‘x’ and this is ‘y’, right, if this is our coordinate?

Ford mirrored Batista’s emphasis on coordinates and axes, indicating, ‘‘… just always

remember that pretty much for the majority of the graphs that we’re gonna look at, be

really careful to read the axes, ‘cause it’s a pretty rare occasion that the graph is gonna be

the path ….’’ Interestingly, Ford was the only PT to cue into the iconic interpretation in the

first homework problem, and we see her reference it again when coaching Marcia on the

second homework problem.

As their explanations for the second homework problem continued, PTs provided

Marcia with suggestions for graphing. Readers will recall that each ‘‘Marcia’’ is trained to

present a third trigger and ask for general examples on how to interpret graphs. At times,

though, PTs began making general suggestions, thereby negating the need for this specific

third trigger. Through interactions with each PT, each ‘‘Marcia’’ could decide whether or

not to present this trigger independent of, or aligned with, discussion of the second

homework problem. In response to this third trigger, Batista gave an encouraging, concrete

example and structure for Marcia to follow. Referencing the second homework problem

and future word problems like it, Batista noted, ‘‘So, I like to underline. So, that’s my

technique of keeping track, but maybe you want a list up here (referencing top of paper

above graph). So, you could just list miles and minutes in like a little graph(sic).’’ Batista’s

reference to underlining key information and then constructing a table of values stands

alone as an outlying suggestion.

Most other PTs suggested visualization as a strategy. For example, Ford encouraged

Marcia to visualize by ‘‘just imagine(ing) the real situation, and that might help …’’ Jordan

makes an identical remark, suggesting, ‘‘… try to come up with a picture or a situation

where that could happen.’’ To bring the visualization suggestion to life, Springer (S) uses a

manipulative when working with Marcia on the second homework problem:

S: So if we started at zero (grabs an object to represent a car driving on the table

between them) …. so, our car started here, zero miles, we travel ten miles to here

(moves object along table) … another 30 min …. then another 30 min, are we going

anywhere?

To follow this manipulative, Springer engaged in noteworthy dialogue about visuali-

zation. In response to Maria’s request for any suggestions, Springer referred back to the

first homework problem, and actually encouraged visualization, confirming he did not

recognize how iconic interpretation and visualization had contributed to Marcia’s error on

that first problem:

S: It definitely helps to visualize. So, take like this one is perfect (pointing to Problem

#1). The basketball, so you can visualize the ball leave the hand, it went up and down

… But the visualizing can cause a little bit of problems (sic) when you have

something like this (flipping back over to look at Problem #2).

Mathematical and instructional/teaching repertoires

As shown earlier in Table 1, our mathematical repertoire coding scheme for the first and

second homework problems generally consisted of the same codes. For example, the code

‘path’ was used to identify data across the entire simulation. Some additional codes were

initially proposed for the second trigger (i.e., Problem #2), like ‘independent’ and

‘dependent variable,’ but these codes were rarely assigned to data. The above data excerpts

provide the reader with examples of how PTs used mathematics concepts and vocabulary
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within their diagnoses and explanations to Marcia. To report these data differently—

outside of the diagnostic and explanatory contexts in which they were used—does not yield

any new insight into the PTs’ mathematical reasoning. Reporting the frequency with which

the PTs used the terms ‘axes,’ ‘distance,’ or ‘height’ does not yield deeper understandings

of their decisions beyond those revealed above. We are better served to know that PTs used

‘visualization’ and ‘representation’ often in their explanations to Marcia, particularly as

they tried to help her more fully interpret Problem 1 or attend to mistakes in Problem 2.

While the PTs’ mathematical repertoires are noteworthy in context, their instructional

repertoires are best represented independently. Doing so allows us to better understand the

instructional practices PTs employed when crafting their diagnostic and explanatory

comments.

PTs frequently used questions when engaging with Marcia. Often, these questions were

used to either check for understanding or to interrogate Marcia’s procedures. At times,

checking for understanding came from very brief, predictable question stems, like when

Springer turned to Marcia on several occasions, made a statement and then checked with

Marcia by simply asking, ‘‘Okay?’’ Referencing more of the context of the second prob-

lem, Henley gave us another example of checking for understanding: ‘‘Right, if it’s a red

light, you stop and then continue. Does that make sense?’’ Importantly, we do see PTs

checking for understanding by asking Marcia to explain her thinking, and not simply

responding to classic ‘yes, I understand’ or ‘no, I don’t get it’ types of questions. For

example, Ford asked Marcia, ‘‘How’d you get that answer? What’d you base that on?’’ in

reference to the first homework problem. For the same problem, Batista asked, ‘‘Shooting a

three-pointer, okay. So, how did you interpret this?’’ Later, Ford questioned Marcia on her

process/approach for the second homework problem: ‘‘Okay, so did you write down your

coordinates first and then make your graph?’’ Questions such as these—where Marcia

must explain her thinking—were less frequent, but clear in purpose.

Noted earlier, several PTs used sketches and diagrams, manipulatives in referencing

distance traveled, and prompts that centered on visualization and representation. In addi-

tion, concrete instructional directives emerged in some simulations. Two PTs—Henley and

Jordan—used clear examples of instructional directives, meant to place the responsibility

for action on Marcia so that she is active and engaged. Referencing the first problem,

Jordan prompted Marcia to ‘‘… make a little dot at where you think it would start.’’ Later,

Jordan again directed, ‘‘So, let’s work with that example (erasing the white board)…Why

don’t you take a pen and make a sketch of this graph? So, it’s gonna be distance and time.’’

Henley gives similar, action-oriented directives to Marcia: ‘‘I would write that too … kinda

explaining that the ball would reach the highest height at that time … so I would write that

also.’’ Of note, Henley also directed Marcia to read her interpretation of the first homework

problem. This serves in contrast to several other PTs, who read aloud either the homework

problems or Marcia’s interpretation of Problem 1.

Finally, questions arose often as PTs worked to scaffold Marcia’s thinking and support

her reasoning. The focus here is not on the interrogative nature of the PTs’ dialogue, but

instead on how they used questions to build student understanding. To begin, consider how

Sidley coached Marcia on her interpretation. Moving from what the graph in Problem 1

actually resembles, she encouraged Marcia to be more intentional about citing the coor-

dinates in her interpretation:

S: … so you’re interpreting this curve (point to graph) as the path of the ball, right?

So, like maybe in keeping with this … it doesn’t start at zero, right?… Maybe we
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could along, like more mathematically, say stuff about this point (top of arc) like

what happens right here.

In a similar effort to scaffold Marcia toward constructing an interpretation more closely

oriented to the data, Ford asked her a series of questions:

F: ‘‘So, when you look at what axes are labeled as, what are the two labels that we’re

looking at?’’

M: Height and time?

F: Height and time. So height…what is (sic) height really measure, like if you’re

changing the height of something, like with your hand?

M: How tall it is.

F: Yeah, how far up and down it is, but when you’re looking at a person shooting a

3-pointer, is there anything else that’s changing…like any other aspects of the

basketball’s position that’s (sic) changing besides just the height?

Jordan presented a final illustration. In response to a prompt from Marcia, Jordan gave

her a separate driving example that is similar to Problem 2. In unscripted fashion, note

how Marcia was struggling to follow Jordan’s representation, and therefore, could not

build from his distinct questions:

J: ‘‘If we leave our house, 5 min later we’ll be a certain distance away. Another 5 min,

we’ll be a certain distance away. At any point, do you see that coming back to our house

if we’re just heading downtown?

M: What do you mean?

J: Um, I mean, if we’re just driving, just driving straight, uh, should we end up…notice

how we come back to our starting point at zero (referring to graph)

M: Yeah, yeah

J: Should we ever come back to our starting point if we’re just driving straight?

M: Yeah

J: We should?

M: Yeah

J: If you start at your house and you just drive straight to (city), when are you gonna end

up being back home?’’

Post-simulation debriefing: approach and deltas

After the PTs engaged in their individual simulations, they used their same login/password

combinations, accessed their simulation videos, watched them, and then gathered together

as a group in a simulation to debrief. Once again, audio and video were captured as the

second author guided the PTs through a semi-structured debriefing. The first author open

coded the entire debriefing transcript once, resulting in twenty-one different codes. This

code list was provided to the other authors, who used it to independently code the

debriefing transcript. After this coding process, each author constructed a data summary for

the debriefing.

PTs reflected extensively on their approaches in simulation. To start, consider Pastle’s

frank reflection,

P: …when (the video) was going on, I was like a lot more critical of what I was

saying…I’m like ‘think of a way to…think of a different way to help (Marcia)

understand’…and I was just blanking. So, I walked out thinking I almost did a
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horrible job. But then I guess rewatching it and seeing what she had to say, I guess it

was just a lot more of me being critical of myself.

As the group debrief progressed, Pastle elaborated on her approach, noting the level of

questions that she asked. In her reflection, she is both proud of her use of questions, but

cognizant of how she could have structured the questions to probe more for student

thinking: ‘‘I felt like I was asking good engaging questions, but I was so quick to be like,

‘yeah!’, ‘right!’, and not like ‘why?’, ‘why do you think?’… I forgot to ask ‘why do you

think that?’ and leading up to have her support it with mathematical evidence?’’ Aligned

with Pastle’s reflection on her use of questions, Batista also commented on how often she

questioned Marcia’s thinking and the unintended consequence:

B: I think I did good focusing questions but I also think that in certain times I like to

question a student’s thinking even if she’s right…and I think I do that too much,

‘cause then they come to expect they’re wrong when they’re right, but I just want

them to justify why they’re right. So, maybe I should start with ‘yeah, this (is) right’,

but instead I’m just kind of like, ‘So, why is this right?’ and they’re like, ‘Is it?’…

As Pastle and Batista’s comments demonstrate, PTs’ organization, choices, and fre-

quency of language surfaced in the debriefing process. To further illustrate, consider

Kline’s reflection on her decision making in real-time:

K: I just start saying one thing and then say another and I just wasn’t organized with

what I was saying and I just felt like…I should have been more organized with my

thoughts and my words, because I was just like starting saying one example, then be

like ‘okay, well this one would be better, so let’s go back to that example’… I felt

like I wasn’t clear enough.

While Kline indicated a need to improve how she organized and presented her efforts to

Marcia, Springer commented on the directional nature of his comments to Marcia, and the

need to use more open-ended cues in future interactions:

S: …I asked good questions when talking about the visual representation…but when

we had to physically put the new coordinate points in the graph, I probably funneled

her a little bit. Like I said, ‘Okay, now where would we put this point?’ you know,

instead of saying like, ‘which point would we change?’

Perhaps, the most straightforward reflections came from Sidley and Springer, again

referencing their use of language as a placeholder. Sidley reflected, ‘‘I think I talked a lot.

Like I kind of really wanted to help … I mean I asked her questions and then she would

answer them, and then I would elaborate on them for her.’’ Sidley’s remarks reflect how

uncomfortable silence can be for novice teachers, where wait time of three seconds is

difficult because it feels like an eternity to the teacher who feels the need to fill that gap.

Springer’s comments are similar and quite poignant, as he focused on both the silence and

the struggle that it represents:

S: I think it’s hard sometimes to watch them struggle. You know what I mean? They

ask you a question and then you ask them a follow up question and they’re really

struggling with the answer. Its hard to sit there and watch them go, ‘uh, uh, uh’ It’s

almost our nature to want to help them.

The post-simulation debriefing fostered discussion of PTs’ approaches, but also allowed

room to discuss their mistakes and changes they would make in the future. Early in the
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debriefing session, the researcher guided PTs back through their approach to the first

homework problem presented by Marcia. Batista’s remarks in the debrief reinforce the

instructional decision she made with the first homework problem. Batista noted, ‘‘I think I

anticipated her to get it wrong, so like I went in thinking the first problem could be wrong,

but she had it correctly (sic) so I didn’t spend as much time on it as I like should have I

guess.’’ When asked by the debriefing facilitator why she thought the first homework

problem was right, Batista’s response is striking, ‘‘Because I thought it was right.’’ This

provided the facilitator an opportunity to discuss the problem with the group of PTs. Ford

explained why she thought Marcia had made a mistake—‘‘Well, she was looking at it as if

it was the path of the object as opposed to position versus time or height versus time

graph’’—and the facilitator asked if the graph could represent someone throwing a ball.

The group discussed under what conditions this could be an accurate representation.

To her credit, as she listened to the facilitator and the other PTs, Kline realized she

maybe should have approached the first homework problem differently. ‘‘I gave her an

example of a person walking and then changing direction and going in the opposite

direction…well, like, was I wrong? Like if you’re walking and then changing direction and

going down…okay, well, I did, I did that wrong.’’ Of equal importance, the follow-up

dialogue between the debriefing facilitator and Kline indicates the origin of her mistake.

Earlier in the semester, the PTs had engaged in a series of completely separate activities,

over several class periods, using a motion detector and a graphing calculator to examine

graphs created by walking. These activities occurred in a methods course taught by the

debriefing facilitator. Kline had thought about the graph on Homework Problem 1 as a

graph that could be formed by walking away from the motion detector and back toward it.

This example could be correct if one is only looking at the graph without the units on the

axes because the increasing part of the graph could represent walking away from the

motion detector, the vertex of the parabola could represent the turning point, and the

decreasing part of the graph could represent walking back toward the motion detector. In

fact, Kline and the other PTs had created graphs that looked similar to Homework Problem

1 using motion detectors; however, this scenario does not match the label on the y-axis of

‘‘Height.’’ Additionally, this example would likely be confusing to a student who had not

used a motion detector to explore graphs formed by walking. Moreover, Kline did not

attempt to understand Marcia’s interpretation of the problem, but rather moved quickly to

explaining the way she thought about it to Marcia.

Later in the debrief, Springer reflected on the vocabulary he used with Marcia, and how

he would refine it when engaging with future students:

S: I picked up on speech mistakes…I say ‘okay’ a lot…so I’m going to try and work

on (that). And sometimes the preciseness of my language, like I said constant ‘speed’

instead of constant ‘distance’…which isn’t technically wrong, but could confuse a

student…like I said when there’s a horizontal line that’s a constant speed, when I

really meant to say a constant distance…the distance isn’t changing, but I said the

speed isn’t changing…it stayed zero speed, but that could’ve been confusing.

Similar to Springer’s emphasis on precision of language, other PTs noted non-verbal

and verbal changes they would make in the future. Reflecting on her impatient disposition,

Ford noted that, ‘‘I look like I drank 10 cups of coffee and ran around the block a couple of

times before I was ready to chill out.’’ After reviewing her video, Sidley also noted a need

to slow down and be more deliberate: ‘‘I should try to maybe slow down and be more

authoritative in what I say.’’ The debriefing researcher clarified, asking if she wanted to

speak more ‘‘confidently,’’ to which Sidley responded, ‘‘Yeah, well, rather than just a
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regular conversation like I’m having right now, I guess just plan out my sentence before

and then just say it with authority ….’’ Citing the non-verbal components of working with

students, Springer reflected,

S: I feel like in that situation at that table sitting across from her, I felt like I almost

kind of dominated the table…like I moved really close to the table, my hand was

right on top of the (homework) paper, and the student was moving back a little…like

(my) body language could be a little better.

Later, Springer reinforced the exact reason why each PT’s simulation is video recorded and

reviewed by participants. He stated, ‘‘It (video) lets you pick up on subtleties … looking

back (through video), I go like, ‘Oh, that was a mistake I made, make sure to correct that

for next time.’’’ Of note, the PTs were asked to review their videos, but were not directed

on what to look for. The self-direction present in Springer’s comment reinforces one

purpose of a clinical simulation.

Discussion and implications

Our discussion is best presented through a classic who, what, when, and how. We begin by

examining who holds responsibility, what content or instructional strategies were con-

sidered, and when and how instructional decisions should be implemented. Our implica-

tions center on the where, through our emphasis on the clinical experience as a location and

context that is distinctly different from traditional field placements.

First, we consider who holds responsibility in a one-to-one learning environment. This

clinical simulation is designed to closely approximate an interaction that a novice math-

ematics teacher would have with a high school student. Thus, we discuss the instructional

and learning roles that these PTs hold in simulation as a representation of the same roles

each would maintain within a high school classroom environment. Our data suggest that

the PTs recognized their instructional responsibility. At first glance, all worked to guide

Marcia through her questions and struggles with the two homework problems. Closer

inspection of the data, though, indicate nuanced instructional styles and perspectives on

responsibility. For example, we see two PTs who are comfortable with and versed in

providing instructional directives. They not only saw themselves as the instructional

authority, but also felt comfortable exercising that authority through appropriate instruc-

tional directives. In direct contrast, the data indicate that other PTs read aloud the

homework problems and Marcia’s written interpretation of Problem 1. It is our argument

that the student should hold—at the very least—this minor responsibility and that the PT

holds responsibility for cueing Marcia to ‘reread the problem’ and ‘read aloud how you

interpreted this first problem.’ In debrief, PTs referenced instructional responsibilities they

hold and the degree to which they met those responsibilities in the earlier simulation. For

example, Pastle reflected on her use of surface-level questions, and her desire to structure

future questions that investigated students’ mathematical reasoning. This suggests her

recognition of the instructional responsibility she holds, how her performance did not fully

meet that metric, and her desire to improve. Pastle’s interrogation of her own questions,

coupled with her peers analyses on the degree to which they were authoritative and

directive, are trends we see from other studies. Borko et al. (2008) report very similar data,

where the video-informed intervention more naturally drew out teachers’ self-assessments

of instructional styles.
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Second, we briefly discuss what strategies and content were selected and how they were

implemented within—and reflected on after—the clinical simulation. Each PT used

visualization prompts to either support Marcia’s understanding of the homework, or as a

suggestion she might use when working with graphs in the future. Although drawn from a

small sample, this trend suggests visualization is either a pervasive self-developed strategy

used by these PTs as students of mathematics, or it stems from effective teaching practices

they encountered in prior mathematics coursework at the secondary or collegiate level. The

manner in which visualizations were implemented showed through the use of manipula-

tives and representations. Springer’s physical demonstration with a manipulative—moving

a car from a defined point to a second point to convey it does not regress in distance

traveled—remains the clear example, with other PTs crafting other written representations

to help Marcia organize and visualize data. By marking variables, axes, or moving toy cars

forward, these PTs embodied Arcavi’s (2003) reference to the use of any object to tran-

sition Marcia from the cognitively abstract concept to a more concrete, spatial represen-

tation, where she can ‘‘see’’ the mathematical concepts.

As an additional example of what strategies were selected and how they were imple-

mented, these data suggest PTs’ considerations of the types of questions they posed.

Through their debriefing comments, we see emerging attention to the quality as well as

quantity of questions. Each PT worked to scaffold Marcia’s understanding of the home-

work problems through questions, but there is emerging cognizance of how questions

should be structured to help Marcia engage more actively. These findings approach those

from Masingila and Doerr (2002), where the multimedia case study resulted in PTs’

pinpoint critiques of the types and levels of questions used to interrogate mathematical

reasoning.

Additionally, the degree to which PTs operated within or extended beyond Marcia’s

mathematical contexts also represents a point of discussion. For the first homework

problem, some PTs operated within the ‘basketball three-pointer’ context that Marcia

presented, while others started their explanations there, and later extended or qualified

those contexts. In the debriefing, Kline provided two important realizations that speak to

the operational context decisions that PTs made. Kline commented on wanting to be more

deliberate in her explanations and examples she provides to students. Such a comment

suggests a willingness to more critically examine her adoption of a student’s mathematical

context, or her willingness to introduce alternative or potentially contrary mathematical

contexts that would better illuminate a particular concept or refute a misconception.

Importantly, Kline admitted her poor choice when working with Marcia on the first

homework problem. Later in the debriefing, she and the facilitator briefly explored her

thinking, locating it within a similar mathematical context explored in a recent ‘methods’

course. This is an especially promising moment for two reasons. Not only did Kline admit

her poor choice for her interaction with Marcia, but she also identified the outside context

from which her reasoning originated. Thus, we see Kline acknowledge the error in not

interrogating the context that Marcia presented, and we see this teacher began to distin-

guish applications and misapplications of one mathematics context to another.

Santagata and Guarino (2011) describe the benefits of using video to help teachers

analyze their practices. Specifically, they note how video of practice informs: (a) teachers’

reasoning about instructional decisions, (b) considerations of how such decisions impact

student learning, and (c) alternative instructional moves. We see similar trends, as our data

provide evidence of mathematics PT reasoning on when instructional decisions should be

enacted. Sidley’s, Batista’s, and Pastle’s comments on the frequency with which they

spoke, interrogated, and intervened suggest the challenge of when teachers should engage
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to foster student growth. Experienced teachers understand the struggle that comes with

wait time, and how effective teachers have learned to accept slowing down with silence to

prompt student learning. With a larger group of students, wait time is commonly awkward

for the novice teacher, as he/she pauses and waits for someone in the group to respond and

engage. In a one-to-one instructional environment, though, wait time and other pacing

decisions are even more challenging. The pace seems much quicker and the issue of when

to question or pause for understanding is magnified. The teacher is not relying on students

from the group to engage, but is instead relying on the only student to respond. Springer’s

words bring this concept to life, as he emphasized the difficulty in watching a student

struggle with content. His words exemplify the internal pull a teacher feels in deciding

when to engage, prompt, question, or just sit quietly and wait for the student. Interestingly,

Springer’s critique of his ‘funneling’ of Marcia mirrors data Borko et al. (2008) recorded,

where one of their mathematics teacher participants also wrestled with the ‘mistake’ (p.

433) of forcing a student toward a particular mathematics solution.

Limitations, strengths, and directions for future research

Our discussion of who holds responsibility, what and how content or strategies were

utilized, and when instructional decisions were implemented suggests final attention to

where this study took place. The where is a clinic, a location and approach that extends the

traditional views of ‘clinical preparation’ within teacher education. This laboratory setting

could be considered a limitation in that fewer teacher preparations institutions have access

to such a facility. However, simulations hinge on carefully trained standardized individ-

uals, not on elaborate clinical settings or expensive recording equipment. Dotger (2013)

discusses the benefits and financial costs of partnering with a similar simulation facility,

but outlines clear steps to implementing simulations, regardless of one’s proximity or

association with a medical school. One clear limitation is the PTs’ predominant reflection

on instructional moves, with much less attention to Marcia’s mathematical reasoning. In

future studies, more elaborate investigations of the PTs’ recognition of and reflection on

(standardized) student thinking are necessary. A second limitation is this study’s sample

size (n = 8), essentially constricting analysis to the qualitative approaches seen herein or

descriptive and nonparametric statistics. It is possible to implement clinical simulations

with large cohorts of teachers, mirroring the much larger numbers of prospective physi-

cians engaging in medical simulations.

One intentional limitation of a clinical simulation is the lack of context surrounding the

interaction between each PT and standardized individual. There are no ringing bells,

interrupting intercoms, or a group of students that fragments the PT’s attentiveness to the

standardized student asking questions. Clinical simulations are intentionally bounded,

limited experiences, intended to approximate (Grossman et al. 2009) classroom practices.

Clinical simulations do not—nor are they designed to—supplant fully contextualized work

in schools with students.

Simulations hold pedagogical strength as opportunities for (limited) engagement with

the practices of teaching (Dotger 2014; Shulman 2005). Fully contextualized teaching is

complex, consequential, and fast-paced. In leading up to and supporting that work, though,

clinical simulations provide PTs with opportunities to enact professional knowledge and

skills in a consequence-free environment. We know that PTs need opportunities to act,

engage, decide, instruct, and make mistakes. As seen in the data, this clinical simulation

gives Kline the opportunity to make a mistake and provides Springer with the opportunity
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to use a physical manipulative in demonstrating distance traveled. Ford had the chance to

ask questions and structure follow-up responses, while Jordan could enact instructional

directives to move learning forward.

Another strength is the use of simulations to help PTs use video data to reflect on their

actual practices, and not on what they think they said or did with a student (Sherin et al.

2011). In this mathematics simulation, each PT engaged with the same problem of practice,

reflected on his/her individual approaches, and was also able to build from peers’ under-

standings later in a group debriefing. PTs’ reflections were grounded in data, and they had

the time to deconstruct those data. A video-supported simulation gives Pastle the oppor-

tunity to closely examine the pace and style of questions she asked, while also giving Ford

the opportunity to critique her ten-cups-of-coffee presentation early in the simulation.

Simulations give Springer the chance to critique his consumption of workspace, while

providing Henley the opportunity to examine her diction when issuing instructional

directives.

An additional strength of simulations is how they result in a shared practice. In many

teacher preparation environments, a single PT describes a professional dilemma, while

twenty others listen with only mild interest to a problem that they cannot immediately see

or embed themselves in. Clinical simulations eliminate the ‘that hasn’t happened to me’

approach of PTs, by literally situating each PT within the professional dilemma. Simula-

tions do not allow for bystanders, idle inaction, and they are not role-plays with a pre-

determined outcome (Dotger 2011). The only role that Springer portrayed in this

simulation is that of his teaching ‘self.’ He had sole control over what he said and did

within the simulation, but was able to later share with his peers how he navigated the

simulated challenges. Other researchers use video and multimedia to construct shared

practices around specific video segments (e.g., Masingila and Doerr 2002) or shared lesson

plans (e.g., Borko et al. 2008), allowing each teacher to envision or immerse, respectively,

himself/herself in that broader practice. Beyond teachers’ shared experiences across an

extended lesson or across different mediums of practice, clinical simulations narrow the

lens even more through the use of very specific triggers.

The data reported herein show how a clinical simulation illuminates PTs’ mathematical

knowledge, instructional abilities, and practices in need of refinement. Moving forward, we

will continue to investigate how clinical simulations can potentially enhance the instruc-

tional capacity of PTs in very specific subject areas. For example, as PTs engage in

multiple algebraic and geometric simulations, how do their experiences translate to the

practices in student teaching contexts, where they are teaching the same content they

encountered in past simulations? In cooperation with other colleagues, we also intend to

examine how clinical simulations serve as a ‘signature pedagogy’ (Shulman 2005, np),

moving beyond a single, episodic intervention. We want to investigate whether and how

simulations might serve as a pedagogy that enhances and extends current approaches to

teacher preparation across subject-specific and general instructional metrics. Simulations

allow us to see PTs practicing, making mistakes, and using data to build from within and

from each other. For educators vested in the development of future educators, the simu-

lation concept and resulting data sets are extending our views of ‘clinical preparation.’
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