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ABSTRACT
This study explores how preservice teachers (PSTs) transfer the
intended specialized content knowledge (SCK) to elementary class-
rooms. Focusing on the case of the associative property of multipli-
cation, we compared three PSTs’SCK during enacted lessons in fourth
grade classrooms with their own learning in professional develop-
ment (PD) settings. Findings revealed the PSTs’ successes and chal-
lenges in unpacking an example task, especially in areas of making
connections between concrete and abstract representations and ask-
ing deep questions that target quantitative interactions. Factors that
may have supported or hindered PSTs’ SCK transfer include the com-
plex nature of teacher knowledge, the PD effort and the outside fac-
tors such as the support from textbooks and cooperating teachers.
Implications for teacher education and directions for future research
are discussed.

1. Introduction

Preservice teachers’ (PSTs) learning to teachmathematics has been found to be challenging
(e.g. [1–4]). To support PSTs’ learning, researchers recently argued for the importance of
specialized content knowledge (SCK) for teachingmathematics [5]. This is a type of content
knowledge specifically needed for the teaching of mathematics. Although there are studies
that have explored PSTs’ learning of SCK in teacher education (e.g. [2,6,7]), very few have
investigated how PSTs transfer the targeted knowledge to actual classroom settings. One
reason for this lack of research may be due to its complexity of conducting studies of this
type that demands access to both settings. This study undertakes this endeavour by explor-
ing PSTs’ SCK transfer from a teacher education programme to elementary classrooms. By
SCK transfer, we refer to the process of putting knowledge into action. As Osterloh and
Frey [8] pointed out, the knowledge transfer itself cannot be observed andmeasured; how-
ever, its outcome can be. As such, this study tracks PSTs transform of several key indicators
of SCK from a professional development (PD) setting to elementary classroom settings. In
particular, we focus on teachers’ unpacking of example tasks through representation uses
and deep questions.
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As Ball et al. [5] pointed out, the mathematical task of teaching ‘involves an uncanny
kind of unpacking of mathematics that is not needed – or even desirable – in settings other
than teaching’ (p.400). Therefore, teachers ‘must hold unpacked mathematical knowledge
because teaching involves making features of particular content visible to and learnable by
students’ (p.400). To aid this unpacking process, representation uses and deep questions are
important SCK facets [5], which are also stressed by the cognitive and classroom research
[9]. To situate this study, we focus on one fundamental mathematical idea, the associa-
tive property of multiplication. This property, along with the commutative and distributive
properties, can be initially learned in arithmetic, which will lay a strong foundation for
future learning of algebra [10–12]. As such, the targeted topic is also viewed as an early
algebra topic [11]. Through the case of PSTs’ learning to teach the associative property, we
ask: (1) How do PSTs learn to unpack example tasks through representation uses and ques-
tioning in PD settings? and (2) How do PSTs unpack example tasks through representation
uses and questioning in the elementary classrooms?

2. Review of literature

2.1. Specialized content knowledge (SCK)

SCK is a key component of ‘mathematical knowledge for teaching’ (MKT, [5]). MKT is
developed from Shulman’s [13] Pedagogical Content Knowledge (PCK) by complementing
it with two major components on subject matter knowledge: common content knowledge
(CCK) and SCK. Consider, for example, the associative property of multiplication. Know-
ing that (3× 2)× 4= 3× (2× 4) is an instance of the associative property ofmultiplication
that can be considered as CCK, which may hold for many educated adults. However, being
able to use specific representations to illustrate this property so that elementary students
canmake sense of it demands SCK.MKT also contains twomain categories of PCK, that is,
knowledge of content and students (KCS) and knowledge of content and teaching (KCT).
Using the example of the associative property of multiplication, knowing students’ com-
mon misconceptions of this property is deemed as KCS while having ready strategies to
deal with misconceptions belongs to KCT. According to Ball et al. [5], among these four
components, SCK is a unique type of content knowledge specifically needed for teaching
(as opposed to CCK) and it does not demand knowledge of students and of teaching con-
text (as opposed to KCS and KCT). Due to these merits, Morris et al. [2] argued that SCK
is a viable candidate for teacher education and thus should draw increasing attention of
teacher education. In fact, Leavy [14] found that obtaining knowledge in one of the four
major subcomponents of MKT can motivationally impact learning in the other subcom-
ponents. Thus, by impacting SCK in this study, it is likely that the other components of
knowledge will also be influenced.

Although Ball et al. [5] have not provided a definition for SCK, these researchers suggest
a list of ‘mathematics tasks of teaching’ (p.400) that makes this content knowledge special.
In the list, the core aspects included teachers’ use of examples, representations and deep
questions, which are in support of the educational and cognitive literature (e.g. [9]). Addi-
tionally, Pashler et al. recommended seven instructional principles as a practice guide for
organizing instruction to improve student learning. Among these, recommendations on
worked examples, representations and deep questions are mostly relevant to instruction
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on a single mathematics lesson (the remaining included ‘spacing learning over time’, using
pre- and post-quizzes, etc.). As such, we focus on these three core aspects as a conceptual
framework when studying SCK transfer. In what follows, we elaborate on each aspect.

... Worked example
For example, Ball et al. [5] suggested using an example to make a specific mathemati-
cal point. Thus, teachers’ use of examples might serve as a window on teachers’ MKT
[15]. These assertions were aligned with that of cognitive research where worked exam-
ples (problems with solutions given) were found effective in developing students’ relevant
schema for solving new problems [16–18]. Consequently, teachers’ use of worked examples
prior to students’ own problem-solving was recommended to reduce cognitive load and
enhance learning [9]. Past studies on worked examples were mainly conducted in labs by
showing students complete solutions. Given that students’ learning is not passive, a teacher
in amathematics classroom should engage students in the process of working out an exam-
ple and making the underlying principles explicit. This process demands teachers’ SCK to
unpack an example through representation uses and asking deep questions.

... Representations
Teachers’ representation use is another key component of SCK. Ball et al. [5] stressed
‘selecting representations for particular purposes, recognizing what is involved in using
a particular representation, and linking representations to underlying ideas and to other
representations’ (p.400). Other researchers also argued for the use of representations to
facilitate students’ modelling process [19]. There were multiple representations that may
be classified as either concrete or abstract. One may consider a story situation or a pic-
ture as more concrete than numerical symbols because the former may activate students’
first-hand experiences to aid learning [20]. In fact, the use of multiple representations has
been advocated by the mathematical education field [21]. Previous studies also have shown
that instruction involving multiple representations enhances mathematical understanding
[22,23]. However, research also pointed out that all representations contain limitations,
which calls for connection-making among these representations. For instance, concrete
representations often carry surface information thatmay hinder students’ seeing the under-
lying principle, while abstract representations are distant from students’ personal experi-
ence, which can cause inert knowledge. Therefore, it is important to help students make
connections between concrete and abstract representations [9]. Unfortunately, teachers in
the United States often introduced multiple representations sequentially without making
connections between various representations. This may decrease the potential for sup-
porting student learning [24]. Recent research assertions favoured fading from concrete to
abstract, which is also called concreteness-fading. In this sequence, representation ‘begins
with concrete materials and gradually and explicitly fades towardmore abstract ones’ ([25],
p.10). This technique takes advantage of both concrete and abstract representations and is
found to be most effective in supporting both learning and transfer of mathematical con-
cepts [20,26,27]. However, literature shows that teachers and textbooks in the United States
often hold a belief that is opposite from this learning sequence [28]. This is because word
problems were treated as ‘harder’ than computation problems and consequently arranged
after the computations.
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... Deep questions
During the process of unpacking an example task, it is also important for teachers to ask
deep questions to elicit students’ self-explanations of underlying concepts and relationships
[29]. Ball et al. [5] suggested ‘asking productive mathematical questions, responding to stu-
dents’ “why” questions, and giving or evaluatingmathematical explanations’ (p.400). Exam-
ples of deep/productive questions include why, why is X important, what is the evidence of
X, how did X occur, what if, what if not and how does X compare to Y [9]. Without teach-
ers’ deep questions, students may not provide deep explanations. In fact, learning effect can
be enhanced when students are prompted to self-explain a worked example solution [30].
Therefore, teacher questions, along with other responses to student explanations (e.g. re-
voicing, orchestrating), have been viewed as indicators of a teacher’s knowledge for teaching
(e.g. [31]) and key factors of classroom instruction [32,33].

2.2. PSTs’ developing and transferring SCK to teachmathematics

Prior studies reported PSTs’ difficulties in developing SCK [2,3,6]. For instance, to unpack a
decimal task that exemplifies the learning goal, many PSTs could not identify the necessary
subcomponents (e.g. relationships between decimal units) of the targeted concept [2]. This
result was consistent with Simon and Blume [3] where PSTs who knew the compressed for-
mula (e.g. area= length×width), lacked the ability to justify why this formula made sense
based on the subcomponents and representation uses. In terms of the associative property
of multiplication targeted in this study [algebraically, (a× b)× c= a× (b× c)], Ding et al.
[34] conducted a survey with PSTs before their taking of the mathematics methods course.
It was found that PSTs who knew what the associative property was (CCK) had difficulties
making connections between pictures and corresponding number sentences when asked to
illustrate the property (SCK). One of the sources of difficulties was related to the PSTs’ weak
understanding of a sub-concept, the meaning of multiplication (e.g. 3 × 2 means 3 groups
of 2). For example, the PSTs tended to explain themeaning of a single quantity (e.g. 3 tables,
2 plates) rather than the interactions between quantities (e.g. 3 tables of 2 plates). Focusing
on single quantities only touched upon surface information, preventing the deep-learning
that demands an understanding of the quantitative interactions [35]. In fact, some PSTs did
not have a clear understanding of the meaning of multiplication, viewing 3× 2 as meaning
either ‘3 groups of 2’ or ‘2 groups of 3’. Although there were different views on the meaning
of a × b as ‘a groups of b’ or ‘b groups of a’ or both1, Wu [36] stressed the importance of
consistency in applying the same meaning during teaching to avoid confusion:

Note that we have implicitly set up a convention in the above definition of multiplication. The
product 3 × 5 could be defined equally well as 3 + 3 + 3 + 3 + 3, i.e. 3 added to itself five
times, but we have chosen to use the other convention instead: 5 added to itself three times.
What is important is that, once we adopt this convention, we stay with it throughout the book
to avoid confusion. The same remark applies to your teaching in the classroom. (p.28)

We agree with Wu that it is important to apply the same meaning of multiplication dur-
ing teaching. In fact, we argue that this is an important SCK component because teachers
with this type of mathematical knowledge can potentially develop students’ mathemati-
cal reasoning and sense-making. Ding [6] reported that such SCK component is learn-
able. With ‘spaced learning’ [9] over a semester, PSTs who were initially confused by the
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meaning of multiplication (a groups of b refer to a × b) demonstrated success in consis-
tently applying themeaning to illustrate the property in their end-of-semester test. To what
extent such learned SCK may be transferred into elementary classrooms calls for further
exploration.

Although there are few studies conducting fine-grained comparison between PSTs’
learning in teacher education and their enacted teaching in classroom, prior research does
document PSTs’ struggles in teaching mathematics. In Borko et al. [1], a PST who had
learned how to illustrate the standard algorithm for fraction division through a methods
course, could not respond to a student’s question about why the procedure of ‘inverse and
multiply’ worked. Even after drawing a concrete picture to justify the procedure, the PST
became lost in the process of explanation and told students to simply follow the procedure.
The authors attributed the PST’s failure in SCK transfer to her inadequate knowledge, along
with her poor commitment. In addition, Sullivan [37] reported that PSTs who believed in
the importance of using concrete aids did not virtually use them during teaching. These
researchers found that PSTs’ reliance on textbooks stimulated their short-term goals, which
led to rule-focused teaching with the use of concrete aids becoming less urgent. As such, it
seems that textbooks may serve as another factor that affected PSTs’ transfer of the learned
knowledge to teaching practices.

In summary, prior studies either explored PSTs’ SCK development in teacher education
or their enacted teaching in classroom setting. A detailed comparison of teachers’ SCK in
both settings is generally lacking, which may otherwise serve as a critical avenue to under-
standPSTs’ successes and challenges in learning to teach. As such, our current study extends
prior research to explore PSTs’ SCK transfer from a teacher PD setting to elementary class-
rooms. Specifically, we will compare, between both settings, PSTs’ learning to teach the
associative property of multiplication through using worked examples, representations and
deep questions. It is expected that findings based on this case study can inform the fieldwith
ways to better prepare PSTs for teaching early algebra and beyond.

3. Methods

3.1. Participants and project

This case study is part of a year-long project aiming to equip PSTs with the necessary SCK
for teaching early algebra in elementary school in the U.S. Three participants who regis-
tered for a mathematics methods course were recruited. This methods course contained
25 PSTs who were in their third-year at the university. Prior to this methods course, the
PSTs took general education courses. This was the first but also last year for them to take
the mathematics methods course. The recruiting process took place through an email list
provided by the course instructor who was not part of this study. We tried to identify PSTs
who had strong interests in learning to teach early algebra, demonstrated willingness to
commit to the project and had availability to participate in the project activities. As a result,
three Caucasian female PSTs (pseudonyms Anna, Cindy and Kate) were selected. Associ-
ated with the methods course, these students would have field experiences in fourth grade
classrooms during which they would implement the lesson plans conducted in the meth-
ods course. Although the course instructor was not part of this study, she was willing to
support the PSTs by allowing them to use the lesson plans and enacted teaching conducted
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for our project as part of their methods course assignments. In addition, the course instruc-
tor acknowledged that her course would not discuss how to teach the associative property
of multiplication. Therefore, there would be no specific input from her regarding how to
teach this topic. College admission files and knowledge and beliefs surveys indicated that
Kate possessed the strongest content knowledge while Anna possessed the weakest; while,
in comparison with Kate, Anna and Cindy’s beliefs in student learning were more aligned
with the reform spirit (e.g. allowing students to construct their own understanding).

For the larger project, PSTs were expected to first attend a 24-h summer training over
six inconsecutive days. The discussion was based on Carpenter et al.’s [11] book about early
algebra including the concept of equivalence, inverse relations, the basic properties (com-
mutativity, associativity, distributive), variable and expressions and solving equations. Dis-
cussions included relevant CCK and SCK for each topic. For instance, we ensured the PST’s
content knowledge of each concept (e.g. the meaning of the ‘=’, how addition and subtrac-
tion are related, etc.). Next, we discussed how each of the conceptsmay be taught to students
through typical example tasks with appropriate use of representations and questioning (we
will elaborate the procedures related to the associative property of multiplication in a later
section). Relevant research findings were also shared with the PSTs. Specifically, we shared
cross-cultural textbook differences in presenting these topics (e.g. [38]) and explained how
these research findings may inform our unpacking of the relevant example tasks. After the
summer training, PSTs were expected to teach the selected lessons in fourth grade class-
rooms. Immediate pre- and post-instructional interviews were conducted with the PSTs.
To support and enhance PSTs’ teaching, we conducted five pre- and post-lessons studies.
The current study reports the part relevant to the associative property of multiplication.

3.2. Task analysis

For this study, Lesson 4.7 was selected for teaching from the fourth-grade textbook
HoughtonMifflinMath [39], a textbook used by the PSTs during their field experience. This
was the only lesson that formally introduced the associative property. Although the text-
book listed the objective as ‘learn to multiply three factors’, it highlighted the ‘Associative
Property’ under the ‘vocabulary’ section and in the example task (see Figure 1). As such,
one may reasonably expect a teacher to help students obtain meaningful understanding
of the associative property of multiplication. According to Ding [6], this textbook lesson
seemed to have two limitations. First, it directly presented the terminology of the associa-
tive property ofmultiplicationwithout any contextual support. In fact, the concrete example
task –Upright bass strings come in sets of 4. Suppose one box holds 2 sets of strings. If a musi-
cian orders 3 boxes, how many strings will there be? – has not been utilized to illustrate the
meaning of the associative property (see Figure 1). The second limitation is due to the lack
of referents of the suggested solution 4× 3× 2. In the twoways of computation, (4× 3)× 2
or 4× (3× 2), most steps could not be explained based on the concrete situation (e.g. there
was no 4 groups of 3 corresponding to 4 × 3).

We anticipated the PSTs to utilize the example task but modify and unpack it through
modelling and questioning. According to prior research [6,34], instead of directly telling
students what this property looks like, a PSTmay start with a concrete drawing of the prob-
lem structure (see Figure 2).
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Figure . Textbook presentation of the example task in Lesson .. FromHMMATH, Student Edition, Grade
. Copyright ©  by HoughtonMifflin Harcourt Publishing Company. All rights reserved. Reprinted by
permission of the publisher, Houghton Mifflin Harcourt Publishing Company.

Possible drawing of the problem structure 

Two ways of viewing the above picture 

1st way : First to find 3 boxes of 2 sets (3 × 2 = 6 sets) 

Then to find the total strings in 6 sets: (3 × 2) × 4 

2nd way: First to find 2 sets of 4 strings  in each box (2 × 4 = 8 strings/box) 

            Then to find the total strings in 3 boxes: 3 × (2 × 4) 

Figure . Possible drawing of problem structure for the string problem.
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Figure 2 could be viewed in two ways. One may find the total number of sets (3 × 2)
and then the total number of strings, resulting in the first solution (3 × 2) × 4. Alterna-
tively, one may first find the total number of strings in one box (2 × 4) and then the total
number of strings in three boxes, resulting in the second solution 3 × (2 × 4). A com-
parison of the two solutions then generates the equation (3 × 2) × 4 = 3 × (2 × 4), an
instance of the associative property of multiplication. Given that the pictures – in compari-
sonwith the number sentences – are relativelymore concrete, the representational sequence
(from the story context, to drawing, to number sentence) shows concreteness fading [20].
To unpack this example task, a teacher may ask deep questions to elicit student explana-
tions of the meaning of each step (e.g. ‘what does 3 × 2 refer to?’). Such questions target
the interaction between quantities, which is the key to deep initial learning [35]. In fact,
such questions may prompt students to link the number sentence to its contextual referents
(3 boxes of 2 sets/box, or 6 sets), and thus set the learning goal as sense-making beyond
answer-seeking.

3.3. Procedures and data analysis

Our PD setting devoted to the associative property of multiplication contained a 1-h sum-
mer training and a 2-h pre-lesson study (see Table 1).

Kate missed the summer training due to time conflicts. During the training, we first dis-
cussed the relevant CCK including the meaning of multiplication (a × b refers to a groups
of b), the associative property ofmultiplication andhow it is different from the commutative
property ofmultiplication.We ensured that the PSTswere aware of the fact that the commu-
tative property refers to switching numbers around with the product remaining unchanged
(a × b = b × a) while the associative property refers to different regrouping of the fac-
tors (not switching the numbers around) with the product remaining unchanged (a× b)×
c= a× (b× c). Next, the instructor introduced research assertions (e.g. [11]) on using con-
crete contexts to illustrate the basic properties. Based on these discussions, the two PSTs in
attendance agreed with the importance of helping students make sense of the associativity.
Anna asked how to draw pictures to represent (3 × 2) × 4 = 3 × (2 × 4), which led to a
discussion about how to illustrate the associativity. In addition to the summer workshop,
we conducted a 2-h pre-lesson study. All PSTs attended this pre-lesson study. The discus-
sion focused on unpacking the textbook example task (the string problem) to illustrate the
associative property of multiplication.

After the PD training, each PST taught a 75-min lesson based on Lesson 4.7 in the ele-
mentary textbook, which was observed and videotaped. The PSTs were interviewed for
their lesson images before teaching (e.g. Can you walk me through what you plan to do?)

Table . Activities of the associative property in PD and elementary classroom settings.
Setting Activity Content Time

PD Summer training Research  h
Pre-lesson study Elementary textbook/lesson plan discussion  h

Elementary classroom Enacted teaching NA  min
Pre-teaching interview Lesson images – min
Post-teaching interview Teacher reflections – min

PD Post-lesson study Video-based discussions . h
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and lesson reflections (e.g. Do you think you have accomplished your teaching goal?) after
teaching. The interview, which was videotaped, informed the analysis of each lesson and
the selection of video-clips for the follow-up post-lesson study. Consequently, during the
post-lesson study conducted a few days after the enacted lesson, we watched and reflected
upon each video-clip with focused discussions on better use of the worked example, repre-
sentation and deep questions. All PSTs attended the post-lesson study.

The pre- and post-lesson studies, pre- and post-instructional interviews and the enacted
teaching were videotaped and transcribed. Employing the case study method [40], we con-
ducted several rounds of analysis of the video data. We first analysed what the PSTs may
have learned from the PD setting, mainly through the discussion of unpacking the string
word problem in the pre-lesson study. Features of the PST’s representation uses and ques-
tioning during this discussion were noticed. Second, we analysed the PSTs’ enacted teach-
ing focusing on the SCK components. To obtain a full picture, we first measured the PSTs’
efforts in using example tasks by calculating the portion of class time devoted to exam-
ples. Since all PSTs taught self-generated examples beyond the string problem, we fur-
ther analysed the problem structures in order to identify the variations among examples.
We also examined the representational sequence (e.g. from concrete to abstract, or from
abstract to concrete) used in each example task. Finally, we analysed the PSTs’ question-
ing and tracked their follow-up responses when facing meaningful or non-meaningful stu-
dent inputs with the goal to identify why PSTs’ deep questions may sometimes end with
unsatisfactory results. We consider a student’s input meaningful if it is explainable based
on the story context and does not contain a mathematical mistake (e.g. a student may see
3 boxes of 8 strings and suggest 8 + 8 + 8); otherwise, non-meaningful. The PSTs’ follow-
up responses (e.g. accepting or defending a wrong answer or providing direct explanations
for students) were also documented. Two independent coders conducted the quantitative
coding with reliability exceeding 90%. To enrich the findings, we focused on each PST’s
enacted teaching of the string problem, focusing on representation uses and questioning.
Typical episodes were identified to illustrate the PSTs’ teaching moves. Furthermore, we
compared and triangulated the PSTs’ teaching with the other data sources (e.g. interviews
and lessons studies) to understand why they do what they do in classrooms.

4. Results

In this section, we report findings based on two research questions: How do PSTs learn to
unpack example tasks through representation uses and questioning in the PD settings and
in the elementary classrooms, respectively. Since rich discussions in the PD setting mainly
occurred during the pre-lesson study, our finding for the first question was mainly taken
from this event. In what follows, we report the findings for each research question, case by
case.

4.1. Developing SCK in PD setting

During the pre-lesson study, our discussion focused on how to unpack the textbook exam-
ple (the string problem) through representation uses and deep questions, which illustrates
the intended instructional approaches (e.g. help students make sense of the abstract prop-
erty through word problem context) agreed by the PSTs in the summer training.
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... Cindy in PD
The pre-lesson study started with discussing Cindy’s PowerPoint that she planned for her
upcoming classroom teaching.Using this PowerPoint, we first discussed the string problem.
Initially, Cindy stated that shewould give students enough time andwould expect a solution
of 4 × 3 × 2. She would then ask students ‘what does the 4 mean? What’s the 3? What’s the
2?’ for her expected solution of 4× 3× 2. The other PSTs all agreedwith Cindy. As analysed
in the Methods–Task Analysis section, the solution of 4 × 3 × 2 does not have a referent
in the story situation (see Figure 1). In fact, Cindy’s questions focused on individual quan-
tities and may not prompt deep initial learning [35]. Therefore, the instructor challenged
the PSTs ‘What does 4 × 3 mean?’ and suggested they draw this problem situation. Cindy
quickly sketched a picture similar to Figure 2(top). This finding was consistent with Ding
et al. [34] in that drawing a diagram is not difficult for PSTs. Based on her drawing, Cindy
commented, ‘We’ve got 3 boxes. Each box has 2 sets and each set has 4 strings. How many
strings will there be? Now we have a picture. I would write 4 × 2 × 3….I wouldn’t write
4 × 3 × 2’. Cindy’s changing of idea indicated her increased understanding through draw-
ing. It seems the pictorial representation permitted attention to the interaction between
individual quantities (e.g. there was an interaction between 4 and 2 but not between 4 and
3). As such, although her solution 4 × 2 × 3 was non-perfect (e.g. there is no ‘4 groups of
2’ but only ‘2 groups of 4’ in the context), it made more sense than the textbook solution.
Cindy’s increased attention on quantitative interactions was also evident in later discussion
of Kate’s solution, 3 × 2 × 4. When the instructor asked, ‘Show me what 3 × 2 refers to
using this picture’, Cindy rephrased it as ‘We have 3 boxes of 2 sets. 3 groups of 2’, showing
her progress toward meaningful interactions.

... Anna in PD
During the discussion ofCindy’s solution to the string problem,Anna questioned the neces-
sity of stressingmeanings, ‘I get what you’re saying, but I would never put that up there’. This
comment is unexpected as she asked for a picture to illustrate the associative property in
the summer training. Nevertheless, later in discussions, Anna spontaneously announced
that she would also write 4 × 2 × 3:

I would do 4 × 2 × 3. I would say let’s break down the problem. Look at the first sentence.
Upright base strings come in groups of 4. I would draw 4 lines. Then I’d say suppose 1 box
holds 2 sets of strings. So I would draw a box and draw the sets. I’d say okay, 2 groups of 4. If a
musician orders 3 boxes, howmany strings will there be. Okay, so I have 3 boxes that look just
like the first box. (Anna’s suggestion)

As analysed in Cindy’s case, although the solution of 4 × 2 × 3 lacked mathematical
rigour, it was more meaningful than the textbook solution. However, further discussion
revealed Anna’s solution was based on the literal rather than structural information in the
problem situation (see Episode 1):

Episode 1:
Instructor: How many strings in one box?
Anna: 8.
Instructor: How did you get that?
Anna: 4 × 2.
Instructor: Why 4 × 2?
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Anna: 2 groups of 4.
Instructor: 2 groups of 4. So why not 2 × 4?
Anna: Because the problem is written in a different order…Because they say 4 strings and

there are 2 sets.

In Episode 1, Anna’s generation of the number sentence was not based on the structural
information but the literal order in the problem statement (4 strings, 2 sets). This is a com-
mon way of thinking held by many PSTs [34]. To challenge Anna, the instructor pointed
out that we could rephrase the sentence, ‘one box has 2 sets and every set has 4 strings’.
This indicates a need to consider ‘how many groups of what’. Based on these discussions,
the instructor guided the PSTs to modify their proposed solution ‘4 × 2 × 3’ to the first
solution to this problem, 3 × (2 × 4). That is, first figuring out how many strings in one
box (2 groups of 4), then determine the total number of strings in three boxes (3 groups
of 8). In addition, Anna demonstrated a robust tendency to focus on individual numbers
rather than quantitative interactions. For instance, when later discussing Kate’s solution of
3 × 2 × 4, Anna quickly explained the meaning of ‘3 × 2’ as ‘3 boxes times 2 sets’, which
was less deep than Cindy’s response of ‘3 groups of 2’.

... Kate in PD
Kate kept quiet most of the time. During the discussion of the solution for the string prob-
lem, Kate made a comment, ‘Not from drawing, but from algebraically, I was thinking 3
boxes, I would write 3 first. Each box has 2 sets, so 2 next, and each set has 4 strings. So
I would write (3 × 2) × 4’. Kate’s suggestion indicated the second solution to the string
problem, first figuring out the total number of sets (3 × 2 = 6), and then the total number
of strings (6 × 4 = 24). However, Kate generated the above solution based on her algebraic
intuition rather than based on the concrete drawing. This indicates a lack of awareness
of the connection between concrete and abstract representations. To support the PSTs, the
instructor stressed themeaning of each step (e.g. ‘howmany groups of what’), which served
as a model to make connection between the concrete and abstract and to ask deep ques-
tions in elementary classrooms. In addition, the instructor suggested asking comparison
questions such as ‘Comparing the two solutions, what do you find?’ – another example of
deep questioning. In fact, the instructor pointed out that if we compared the above two
solutions, an instance of the associative property can be naturally generated: 3 × (2× 4)=
(3 × 2) × 4.

... Summary
The learning process during the PD setting contained productive struggles. The PSTs
noticed the improper textbook presentation and drew pictures to illustrate the problem
structure that was not in the textbook. Although they lacked the awareness of quantita-
tive interactions, with the instructor’s consistent request for meaning, the PSTs collectively
suggested two different solutions, which contributed to illustrate the associative property
of multiplication. With the instructor’s continuous support, the PSTs also could explain
the number sentences, attending to the quantitative interactions – critical evidence of their
SCK gains. Overall, the intended approach – meaningfully solving a word problem in two
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ways (the numerical solutions of which can be compared to reveal the associative prop-
erty) – was fully discussed. Note that the instructor explicitly stated that the discussion of
the string problem only serves as an example and the PSTs may teach with flexibility.

4.2. Transferring SCK to classroom settings

... An overview of the enacted lessons
After the PD setting, each PST taught their planned 75-min lesson to fourth graders.
Regarding the worked examples, in addition to the textbook string problem, the three PSTs
presented self-created examples: Kit Kat problem and/or the counter problem. The Kit Kat
problem stated, ‘There are 4 individual Kit Kat bars in a package. If I have 3 packages how
many individual bars do I have?’. The counter problem involved using a manipulative con-
sisting of 3 baggies, each with 5 counters, and creating sets by clipping together groups of
baggies. Table 2 summarizes the instructional time spent on each example task along with
the problem structures of the sub-tasks.

As indicated by Table 2, each PST tried to unpack at least one example task (10+ min).
However, the subtasks of the self-created examples appeared to be similar or even easier
than the textbook example. Examining the representational sequence among the seven
example tasks (see Table 2), four (57%) were from concrete to abstract. These concrete sit-
uations often elicited meaningful responses. The remaining three examples were discussed
either in an abstract context only (n = 2, 28.6%) or went from abstract to concrete (n =
1, 14.3%). Consequently, students generated random number sentences with no referents
to the word problem situation. Facing students’ meaningful or non-meaningful inputs, all
PSTs asked questions (R1). To follow-up, the PSTs tended to either accept a wrong answer
(R2), defend a wrong answer for students (R3), offer their own explanations (R4) or ignore
a student input (R5). Table 3 summarizes the frequency of each PST’s responses across
example tasks.

Table . Worked examples in the enacted lessons.
Example Time Number of
task spent subtasks Structure of each subtask Representation sequence

Cindy Kit Kat ’  (a)  packages of  Concrete to abstract
(b)  packages of  ( box)
(c)  boxes of  packages of 

String ’  (a)  boxes of  sets of  strings Concrete to abstract
Anna String ’  (a)  boxes of  sets of  strings Abstract to concrete

Kit Kat ’  (a)  packages of  Abstract only
(b)  packages of  ( box)
(c)  boxes of  packages of 

Counter ’  (a)  bags of  Concrete to abstract
(b)  sets of  bags of 

Kate Counter ’  (a)  bags of  ( case) Concrete to abstract
(b)  cases of  bags of 
(c)  bags of  ( case)
(d)  cases of  bags of 
(e)  bags of  ( case)
(f )  cases of  bags of  counters

String ’  (a)  boxes of  sets of  strings Abstract only

Note: ’denotes  min.
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Table . Types of teacher responses in the example tasks.
Teacher response Cindy Anna Kate

R (question) % (n= ) % (n= ) % (n= )
R (accept) % (n= ) % (n= ) % (n= )
R (defend) % (n= ) % (n= ) % (n= )
R (explain) % (n= ) % (n= ) % (n= )
R (ignore) % (n= ) % (n= ) % (n= )

In the next sections, we report each teacher’s enacted teaching starting with an overview
followed by the detailed case of the string problem. In particular, the instructional flow of
the string problem in each class is illustrated in Table 4.

... Cindy’s enacted teaching
Cindy taught two examples (Kit Kat, string), which counted as 28% of her total instruction
time (see Table 2). Her representational sequence in both examples was from concrete to
abstract. That is, she always started with a picture representing the problem structure that
elicited students’ meaningful input. Facing students’ inputs, Cindy always asked questions
(R1). In fact, as indicated by Table 3, Cindy asked the highest proportion of questions. How-
ever, her follow-up responses also contained accepting student wrong answers (R2) and
explaining for students (R4). Occasionally, she ignored students’ meaningful inputs (R5) to
proceed with what was planned. In the following, we illustrate her teaching of the string
problem.

Cindy spent 17 min on the string problem. Her class started with collectively drawing
a picture to represent the string problem, which immediately elicited students’ meaningful
inputs (see Table 4) as indicated in Episode 3:

Table . The case of PSTs’unpacking of the string problem.

Cindy Anna Kate 

Representation use Concrete to abstract Abstract to concrete Abstract only  

Student initial input Meaningful
Non-
meaningful

Meaningful
Non-
meaningful

Meaningful
Non-
meaningful

Teacher questions and 
follow-up responses

         R1 

        R4 

        R1 

           R4 

           R1 

      R1 

       R2 

R1

      R4 

R1

R3

R2

R4

R3

R1

R2

R1

R3

R1

R2
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Episode 3:
T: With this picture, can we pull numbers out for our equation?
S6: 6 × 4.
T: 6 × 4. Tell me why. You can come up to our picture if you want to.
S6: (came to the board but inaudible.)
T: Okay, so you took 6 times 4 because there’s 6 sets and there are 4 in each set. (To the

class) When we’re looking at this picture, would that be the right answer?
S3: No.
T: Let’s think about it. We have 6 sets and there are 4 in each set. What does that equal?
Ss: 24….
S20: But the 3 boxes…
T: Okay. So Derri has 6× 4. What’s another way we can look at this? … instead of 6, Derri,

how can we get three numbers for this problem? What did you multiply? The 3 boxes
times 2 sets to get 6, does that sound right?

S6: 1 box of 8 and 2 sets of 4.
T: 1 box of 8 and each set has 4. So 8 × 3. Is that what you are saying?
S6: I added them.
T: Oh, you added 8+8+8?
S6: 8+4+4+4… (inaudible).
T: So you would still need one more…to add on 4 and then 4 more. That’s why multipli-

cation is helping us out because instead of having this problem 4+4+4+4+4+4, that’s
just what Derri said, 6 × 4. It’s like using that repeated addition. Alright…

T: So with this problem, our lesson is about multiplying three numbers. …I want you to
get out your math notebooks. I want you to write down the three numbers you would
multiply together for this problem…

This episode reflects the complexity of classroom teaching due to the interaction
between the teacher and multiple student resources. To some degree, Cindy’s teaching
demonstrates SCK transfer in asking deep questions and using the pictorial representations
to aid student understanding. When a student suggested the meaningful solution of 6 × 4
based on the picture, Cindy asked a deep question – ‘Tell me why’. She made a sound teach-
ing move by asking this student to come to the board to explain using the picture. When
another student wondered why the ‘3’ representing boxes were not used, Cindy asked the
broad question, ‘How can we get three numbers for this problem?’. Asking for a number
sentence that directly multiplies three numbers was an action to ignore students’ existing
meaningful input (see Table 4). In fact, Cindy could have asked a specific question based
on student input, ‘How did you get 6?’, which would lead to the first solution (3 × 2) × 4.
Instead, Cindy provided a direct explanation for students. Interestingly, Cindy’s direct
explanation seemed to be unaccepted by the student. Derri (S6) explained that he saw ‘1
box of 8 and 2 sets of 4’. He continuously added the 4s to the 8 (8 + 4 + 4 + 4 + 4), to
which, Cindy successfully linked back to 6 × 4.

Although the students initially provided meaningful inputs, Cindy did not fully grasp
the student inputs and resorted back to requesting a solution involving three numbers as
indicated at the end of the episode. The class suggested 4 × 3 × 2, 3 × 4 × 2, 4 × 2 × 3
and 3× 2× 4 and found that all three number sentences arrived at the same answer. In the
end, Cindy used 4 × 3 × 2 and directly added parentheses to it in both ways to reveal the
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associative property of multiplication. This was exactly the textbook approach that Cindy
criticized during the pre-lesson study. In other words, the discussion in Cindy’s class ended
on the non-meaningful side (see Table 4). In fact, Cindy could have grasped the students’
inputs to orient student attention toward the first solution ‘6 × 4 = (3 × 2) × 4’ and the
second solution ‘8 + 4 + 4 + 4 + 4 = 8 + 8 + 8 = 3 × 8 = 3 × (2 × 4)’, which could
be further compared to reveal the associative property of multiplication, (3 × 2) × 4 =
3 × (2 × 4).

In the post-instructional interview, Cindy appeared to be satisfied with her lesson, ‘They
understood how to set up a problem’. She was particularly satisfied with her questions, ‘I
tried to…say, you know, what does the 2 mean in this one, what does the 4 mean, what
does the 3mean in this one? So they knew exactly what theywere doingwith those numbers
and why they were doing those things’. As previously analysed, asking for the meaning of
individual numbers rather than the interactions between numbers lacked depth. It was not
until the post-lesson study where the specific video-clips were discussed that Cindy made
deep reflections on her lessons, ‘I should have said, okay 6, what is 6? Okay, 6 is 3 boxes
of 2 sets’. She also agreed that the students’ meaningful inputs could be better grasped to
form the two anticipated solutions so as to illustrate the associative property of multipli-
cation. Overall, Cindy’s enacted teaching demonstrated SCK transfer, especially in using
representations. However, her flexibility in responding to student inputs could improve.

... Anna’s enacted teaching
Anna taught three worked examples (string, Kit Kat, counter). Overall, Anna devoted the
highest portion of instructional time to worked examples (48%). In the pre-instructional
interview, Anna explained that if students could not get the first example, she would then
use subsequent examples to further their understanding. Anna’s representation sequence
demonstrated an inconsistent style (see Table 2). When teaching the string problem, she
first called for an equation, followed by a pictorial illustration (abstract to concrete). In
her Kit Kat problem, she only asked for an equation (abstract only). In her counter prob-
lem, she started with bags of counters (concrete to abstract). During discussion of these
example tasks, Anna did askmany questions (R1); however, when students provided wrong
responses, she either accepted the wrong answers (R2) or defended for students (R3). In
fact, among the three teachers, Anna tended to defend for students most frequently (e.g.
‘The way that he multiplied used the commutative property’). She also provided direct
explanations for students (R4). The following demonstrates her enacted teaching of the
string problem.

After writing the key words of the string problem on the board, Anna requested equa-
tions from students without concrete aids (see Table 4). Students provided non-meaningful
responses that cannot be explained based on the story situation (4 × 2 = 8, 8 × 3 = 24).
Anna responded with a deep question but rephrased it to focus on surface information:

Episode 2:
T: Why did you do 4 × 2 = 8 first?
S8: Because I had to get the answer to solve the missing number on the equation.
T: What does the number 4 represent? What is 4, 4 what?
S8: Four strings.
T: Four (underlines ‘4’ on board) bass strings.
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Figure . Anna’s unpacking of the string problem.

T: Okay, what’s your 2?
S8: Times 2 is in one box. It is holding 2 sets.
T: So because you have 2 sets of 4, right? You put 4 × 2, right? Good, that’s right.
(Continue to discuss the meaning of ‘3’ until the class reach the answer of 24).
T: Good, letme show you something. I’m going to …draw this picture. (Drawing on board,

see Figure 3) … So if you have 4 strings in one set and you have 2 sets, so if this was
an array, we would say we have 2 groups of 4, right? Is that how you would say that?
Because you can see these 2 groups, right? So we have 2 groups of 4, so I would write it
2 × 4, right? And then I have 3 whole boxes, with each group in it. So I would do that
‘× 3’. And if you were using associative property, I would say I would do 2 × 4, right?
… I think it makes sense to do (2 × 4) × 3. Does anybody have any questions about
that?

In Episode 2, Anna’s initial question ‘Why did you do 4× 2= 8 first?’ requested an expla-
nation of quantitative interactions; however, when this question was quickly rephrased to
focus on individual numbers (e.g. ‘What does the number 4 represent? What is your 2?’),
classroom conversation remained centred on surface information. Asking for the mean-
ing of individual numbers would not produce a conflict between the concrete (2 groups
of 4) and abstract representations (4 × 2). As a result, Anna accepted and even defended
students’ answers (‘So because you have 2 sets of 4, right? You put 4 × 2, right? Good,
that’s right’, see Table 4). These teaching moves were consistent with the pre-lesson study
where Anna was reluctant with stressing the meaning. Surprisingly, Anna went further to
draw pictures during which she attempted to stress the meaning of multiplication (e.g. ‘we
have 2 groups of 4, so I would write it 2 × 4’). This teaching move indicates Anna’s signif-
icant effort to transfer the intended SCK into elementary classroom. However, given that
she first accepted and defended students’ wrong responses but then tried to stress mean-
ing, inconsistency in instruction might have caused students’ confusion. In addition, while
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attempting to stress meaning, Anna was only correct in the first but not the second step
(should be 3 groups of 8). This again conveyed inconsistentmessages to students. In fact, her
mention of the associative property was out of place. As observed in later discussion, some
students stated that they did not understand, further causing frustration for Anna. In the
post-interview, Anna complained, ‘it was frustrating because they [students] didn’t under-
stand anything I was saying…they weren’t paying attention, they didn’t care’. Anna’s frus-
tration drew her back to the skepticism on stressingmeaning, which also brought out other
concerns:

I think that meaning is stupid, because yeah we want to teach meaning but … when you’re
[going to] give them a test, like the worksheet that I gave them, that worksheet that they did
had no meaning on it. It was all numbers, all procedure … So, when I try to teach them the
meaning, they’re going, “just tell me the procedure, so I can memorize it, so I can do well on
my test.” That’s all they care about. (Anna’s post-interview)

Anna’s complaint was evident in the existing textbook worksheets that simply asked stu-
dents to multiply three numbers in different ways, which may not necessarily involve the
associative property of multiplication. Anna’s complaint was also reflected by her cooper-
ating teacher’s evaluation on her lesson, which seemed to weaken Anna’s reflections. Anna
mentioned in the post-lesson study that the cooperating teacher commented, ‘I don’t know
what you feel so badly about…they totally got it! They just took the math test the other day
and they did fine’.

In some sense, Anna’s reflections contained truth and it is always good to consider stu-
dent motivation; however, her reflections focused mainly on external factors (e.g. students,
assessments) rather than internal factors (e.g. teacher knowledge). Indeed, the deficiency
of her own SCKwas confirmed through the post-lesson study.When we discussed her own
video-clip that contained (2 × 4) × 3, Anna did not recognize the mistake in the second
step. It was not until our later discussion of Kate’s lesson that Anna admitted she finally saw
this a lot clearer.

... Kate’s enacted teaching
Kate taught two worked examples (counter, string), which together took 20% of her class
teaching time (Table 2). Note that although the counter problem took 10 min, this prob-
lem contained six repetitive subtasks (see Table 2). As such, Kate went through each sub-
task quickly. Like Anna’s representation sequences, Kate started her counter problem with
bags of counters (concrete to abstract) while her string problem involved abstract equa-
tions only. During the discussion, when students provided an incorrect response that was
not supported by the modelling perspective, Kate tended to simply accept them without
further discussions (R2). Kate did this most often (e.g. ‘So you did, the four and the three
equals twelve, times two’). Similar to the other PSTs, she also provided direct explana-
tions for the students (R4, see Table 3). The following presents Kate’s teaching of the string
problem.

Kate’s class spent 5 min on the string problem, with the discussion remaining abstract
(see Table 4). The class started with selecting the key quantities from the word problem.
Next, students suggested an equation that did not have any reference to the story situa-
tion. Further, various ways to find the answer for this equation were discussed, which were
mistakenly linked to the associative property of multiplication.
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Figure . A wrong interpretation of the associative property of multiplication in Kate’s class.

Episode 4:
T: First, let’s just as a class, what are some of the important pieces of information that you

picked up on? Katie.
S13: Sets of 4. … (Kate’s student picked 4 strings, 2 sets and 3 boxes; Kate wrote ‘Each

set = 4; 2 sets = 1 box; 3 boxes = ordered’ on the overhead).
T: So our equation, Tyler, do you want to come and write the equation that you got.
S4: [Writes the equation, (4 × 2) × 3, see Figure 4, left].
T: Tyler, why did you decide to group four and two?
S4: Because four and two equals 8 and I know how to times 8’s and it’s easier.
T: So it’s easier. Anyone else do it a different way? Nicole, come to show us how you did it.
S9: (Goes up to overhead) This is how I did it, 4 times 2 times 3 equals, 4 × 3 = 12 (draw

a line to link 4 and 3), 12 plus 12, I know that because of the 2, equals 24 (see Figure 4,
right).

T: So you did, the four and the three equals twelve, times two. Because you took it two times
right? So that is a different way of doing it and that just shows us again, what does that
show us?

S9: That shows us the associative property.
T: The associative property of multiplication. Good job.

In the above episode, without any concrete support, Kate’s class produced a number
sentence (4 × 2) × 3 that did not reflect the problem structure and was corrected in our
pre-lesson study. The follow-up discussion on finding the answer was limited to number
manipulation. AlthoughKate asked students to explainwhy they didwhat they do, students’
responses were only related to which two numbers were easy to multiply. In the end, Kate
guided the class to compare the twodifferent solutions 4× 3× 2= (4× 3)× 2= (4× 2)× 3
andmisinterpreted this as an instance of the associative property. Kate’s cooperating teacher
re-emphasized this wrong interpretation at the end of the class. Such a misinterpretation
might have supported Kate’s confidence in teaching as indicated by her post-instructional
interview. Overall, in comparison with Anna and Cindy’s teaching, Kate’s lesson appeared
smoother because she generally accepted all students’ answers without stressing any mean-
ing of multiplication. In the post-lesson study, Kate explained that she decided not to spend
too much time on the meaning of each step because ‘they all got it’.

In summary, Anna andCindymade a greater effort in transferring the intended SCK into
enacted classrooms; however, students’ input brought challenges. As such, both teachers
experienced some frustration. In contrast, Kate aimed to stress procedures and did not



INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY 917

transfer the intended SCK into classrooms. Consequently, shewas satisfiedwith her enacted
lesson.

5. Discussion

5.1. Successes and challenges in SCK transfer

The current study extends prior studies on SCK [2,6,34] and explores the process of PSTs’
SCK transfer from teacher education to elementary classroom. Such an endeavour is rare in
the literature likely due to its complexity in aligning the PD effort with the corresponding
classroom teaching. Regardless of the complexity, a close inspection of such a transfer pro-
cess and factors that may support or hinder this process is much needed if we want to help
PSTs successfully obtain the necessary SCK for further teaching. Our exploration focused
on a unique case, the associative property of multiplication, which is a fundamental mathe-
matical idea emphasized by theCommonCore [12] but overlooked in educational research.
It is expected that our findings will inform the field about PSTs’ successes and challenges in
SCK transfer and thus better prepare PSTs for future teaching.

The targeted SCK components in this study were unpacking example tasks, mainly
through the representational uses and questioning. Teachers’ abilities to select and use
examples serve as a window on their MKT [15]. In this study, each PST did spend time
unpacking at least one worked example in the enacted lesson; however, discussions focused
mainly on solving the word problem itself and then applying the associative property to
find the answer. This was inconsistent with the purpose of illustrating the basic property
through solving the example task. In this sense, the example task was not treated as a case
of a principle [16]. Furthermore, all PSTs created their own example tasks in addition to the
textbook example. However, the PSTs’ self-created tasks followed the exact form of the text-
book examples. Simple repetitiveness of example tasks without variation does not promote
students’ encoding of the key principle [41].

The PSTs were expected to unpack an example task through connecting concrete and
abstract representations and asking deep questions to elicit student explanations [9]. These
PSTs demonstrated partial success in transferring both subcomponents of SCK. For exam-
ple, the PSTs either drew appropriate pictures or used manipulatives during the discussion
of example tasks. These drawings and manipulatives served as concrete representations to
help connect the problem situation with the abstract number sentences. When concrete
representations were provided, some students offeredmeaningful inputs as part of the class
conversation. In addition, at least two PSTs attempted to ask deep questions to help students
understand themeaning of abstract symbols and refer them to the concrete representations.
The PSTs’ success in this regard indicates that with appropriate training, PSTs have a poten-
tial to transfer the intended SCK from PD to classroom settings.

Our findings also reveal challenges in the PSTs’ representation uses and deep question-
ing because these SCK components were only transferred to the initial but not later phases
of instruction, which is similar to Zevenbergen’s [4] finding.With regard to representations,
although PSTs in the PD setting agreed upon the importance of using concrete represen-
tations for modelling, concrete representations in the enacted lessons were not sufficiently
used for mathematical modelling and reasoning. For instance, Cindy expected students to
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give an equation immediately following the construction of a picture. This indicates a pur-
pose of answer-seeking, allowing students to multiply the numbers any way. If the purpose
is to illustrate the abstract idea through modelling, PSTs must guide students to reason
upon the drawing in different ways to generate different expressions that can together
illustrate the associative property [6]. In fact, PSTs who did lead class discussion on con-
crete representations failed to pursue deep conversations. For instance, while we stressed
meaningful interpretations (how many groups of what) in the PD setting, the PSTs in
the enacted teaching resorted to asking the meanings of individual quantities rather than
quantitative interactions. In some occasions, they did stress quantitative relations; yet,
they were only successful in the first but not the second step. This was again similar to the
findings of previous studies [4,6,34].

Teacher questioning demonstrated similar challenges. Inmost occasions, the PSTs asked
an initial ‘why’ question without following-up with deep prompts. Instead, their follow-up
teaching moves – accepting and defending wrong answers, providing own direct expla-
nations and ignoring meaningful student inputs – all risk the abandoning of meaningful
teacher–student interactions. Thompson and Thompson [33] emphasized that teachers
must ‘be sensitive to children’s thinking during instruction and shape their instructional
actions accordingly’ (p.279). Classroom interaction may delineate from facilitating effec-
tive learning when PSTs give up the follow-up questions too quickly. In fact, asking deep
follow-up questions appears to be difficult even for in-service teachers [42], which should
draw attention of teacher education. In fact, although the PSTs asked the why questions,
they only anticipated numerical but not relational responses. Focusing on numerical rather
than relational calculation [43] is a common issue in current classrooms, which causes the
lack of deep initial learning [35]. Overall, the above challenges in PSTs’ representation uses
and questioningmay partially explain why the PSTs lacked the abilities to unpack an exam-
ple task to illustrate the underlying principle.

5.2. Factors thatmay support or hinder PSTs’ SCK transfer

Despite imperfections in carrying out lessons, the degree to which the PSTs transferred
SCK to classrooms appears to associate with different learning gains. In the PD setting,
Cindy demonstrated the most understanding of the intended SCK. Consequently, the SCK
components were most visible in her enacted teaching. Regardless of the difference, one
common factor that affects PSTs’ SCK transfer may relate to the complex nature of teacher
knowledge demanded for actual teaching. SCK is a special type of content knowledge, not
directly dependent on the knowledge of students and teaching [5]. However, when the
PSTs try to transfer SCK from the PD setting to elementary classrooms, the complexity of
the teaching context and student thinking seems to bring challenges. For instance, while
the PSTs in this study could explain the meanings of each step during the PD setting,
when elementary students in the enacted lesson presented unexpected solutions, the PSTs
failed to ask deep questions to orient students’ attention toward meaningful interpretation.
This indicates that SCK alone might not be sufficient for pursuing SCK transfer. Perhaps,
if PSTs could have stronger knowledge about content, students and the teaching context
(KCS and KCT), they may be able to better capture students’ thinking and better exercise
their SCK in the classroom context. PSTs’ lack of KCS and KCT may be related to their
own weak CCK because these PSTs themselves possessed similar confusion, which might
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have blinded their ability to see students’ mistakes. The above findings reveal that although
there is a possibility to transfer the targeted SCK into classrooms, other components of
teacher knowledge play a role [7,14], making the SCK transfer process more challenging.
Future studies might explore how these knowledge components may interact with each
other during the process of SCK transfer.

Another factor that affects PSTs’ SCK transfer may be related to the PD setting. The
PD activities in this study only accumulated to 3 h, mainly through a one-time pre-lesson
study. This was different from Ding [6] where PSTs had reoccurring opportunities to learn
the targeted SCK. Perhaps, the challenges in our study echo the importance of spaced learn-
ing [9], which may allow the solidification of PSTs’ SCK and better transfer of it to class-
rooms. In reality, many mathematics methods courses may at most afford one 2–3 h meet-
ing (like this study) to discuss a specific topic like the associative property of multiplica-
tion. Our findings, therefore, call for innovative ways to support PSTs’ learning in teacher
education.

Findings in this study also revealed outside factors beyond teachers’ own knowledge and
the PD effort. First, the textbook could have better presented the example task inmathemat-
ically and pedagogically meaningful ways, with worksheets that go beyond assessing pro-
cedural knowledge. Sullivan [37] found that textbooks largely influence teaching, and PSTs’
reliance on the text leads to emphasis on short-term goals, which further leads to teaching
practices that are procedural and rule-focused. As such, textbook designers may revise the
presentation of example tasks and provide key points in representation uses and question-
ing to support teacher learning [44]. Second, cooperating teachers’ knowledge and beliefs
could be strengthened to better support PSTs’ learning. Given that cooperating teachers
are a key factor that directly affects PSTs’ growth, teacher education may consider how to
provide PD opportunities for cooperating teachers along with PSTs. With a more support-
ive learning environment, there is greater likelihood that PSTs can be equipped with the
necessary SCK and transfer the SCK into elementary classrooms to teach early algebra and
beyond.

Note

1. This debate goes beyond the scope of this study. We agree with Wu that regardless of the inter-
pretation, a teacher should use the chosen interpretation consistently to conduct mathematical
reasoning. This study chose the first interpretation, a × b refers to ‘a groups of b’, because this
definitionwas used by the elementarymathematics textbook series when it initially definedmul-
tiplication. Indeed, this is amore popular interpretation in theU.S. However, given that the focus
of this study is on SCK, we focus on making connection between concrete representation (e.g.
3 boxes of 2 sets/box) and the corresponding abstract representation (e.g. 3 × 2).
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