Supporting Science Learning and Teaching in Middle School Classrooms Through Automated Analysis of

Students' Writing

(Collaborative Research: Puntambekar)

MOTIVATION & GOALS

- Scientific writing and explanation is a core science practice, but students find it difficult to write and use data as evidence
- Teachers find it challenging to provide comprehensive, constructive feedback in real-time
- NLP technologies can help by providing:
- Students with timely and personalized feedback
- $\circ\,$ Teachers with information about students' progress
- Our goal Describe how *PyrEval* (Gao et al., 2018; Passonneau et al., 2018), an NLP technology, was used to: a) automatically assess students' essays and provided feedback and b) help students write about and learn science

Research questions:

- How does automated feedback help students explain key ideas in their science essays?
- What are the opportunities and limitations of using automated feedback in classrooms?

STUDY DESIGN & CONTEXT

- 264 students, 8th-grade, 3 public middle schools
- 3-week physics unit on the Law of Conservation of Energy and energy transformations using a roller coaster simulation
- Students used simulations and a digital notebook to conduct experiments and write essays
- · Students wrote three essays:
- $\circ~$ Essay 1 (E1) \rightarrow Feedback from PyrEval on Content Units (CUs)
- $\circ~$ Essay 2 (E2) \rightarrow Feedback from PyrEval on CUs
- Essay 2 revised (E2R)

Table 1. Content units and corresponding feedback

Content Unit (CU)	Idea	If absent, the following comment was integrated into the feedback
CU0 - Height and changes in energy	As the car moves down the hill, kinetic energy increases and potential energy decreases	"How does height affect PE and KE?"
CU1 - Mass and energy	A cart with greater mass will have greater energy in motion or at rest	"Have you thought about how mass affects PE and KE?"
CU2 - Law of Conservation of Energy	The Law of Conservation of Energy states that energy cannot be created or destroyed, only transformed	"Think about how height affects PE and KE while explaining Law of Conservation of Energy."
CU3 - Initial drop in relation to hill height	The initial drop height should be higher than the hill height	"Think about whether the initial drop height should be higher or smaller than or the same as the hill height."

Repeated measures analysis:

- Conducted with students who completed all 3 essays (N=228)
- Students included significantly more CUs in:
 E2 than in E1 (*M*=3.68, *SD*=2.40)
- E2R (M=5.05, SD=3.02) than E2 (M=4.77, SD=2.93) (F1,228=82.1889; p<.001; np²=.267)

Sentence length:

- t-test on essays containing 25 words or fewer per sentence and more than 25 words
- PyrEval identified significantly more CUs when the sentence length was 25 words or less

Other observations:

- Students often:
- Used little or no punctuation
- Repeated ideas across multiple sentences or paragraphs
 → more difficult for PyrEval to accurately detect
- $\circ\,$ Made both successful and unsuccessful revisions based on the feedback

Table 2. Types of successful and less successful responses to feedback

More Successful	Less Successful
Students: • added new ideas • better elaborated ideas • explained directional relationships based on data	 Students: did not make any revisions mentioned data from their experiments without explaining relationships
Suggests that the automated feedback helped students think about and/or understand the relationships between concepts more deeply.	May imply that students did not fully understand the feedback, understand the content, or thought they addressed the feedback, but did not improve their explainations

Table 3. Example of a successful student revision based on feedback

Revision Type	Essay 1 Response				
Student improved by explaining the directional relationship between variables from E1 to E2	"I believe the initial drop height should be 5 meters. The PE at the beginning at 5 meters was 2443 Joules and the KE at the bottom of the roller coaster was 2443 Joules. This is going to create enough speed/velocity to get us over our hills, loops, and to the end of the roller coaster since it has the most energy."				
Feedback	Essay 2 Improvement				
Can you explain how height affects PE and KE?	"When we increase the height the PE and total energy go up Height is a part of the PE and total energy formula but not the KE formula. For example, when the height was 3 meters, the PE was 2446 Joules and the KE was 0 Joules. But when the height was 5 meters"				

RESULTS

Wilcoxon signed-rank tests:

- Significant differences between E1 and E2R for CUs 2, 3, 4, 7, 10, 11, 14
 - $\circ~$ Students included more of these CUs in E2R compared to their E1 ~
- No significant differences for the other CUs (0, 1, 5, 6, 8, 9, 12)

Table 4. Wilcoxon signed-ranks, adjusted α , and z scores for the significant CUs

CU and Meaning		Ranks: Positive (P), Negative (N), Ties (T)			Z score	p value
	Ν	Ρ	Т			
CU 2: The Law of Conservation of Energy states that energy cannot be created or destroyed, only transformed	4	34	195	.0036	4.664	<0.001
CU 3: The initial drop height should be higher than the hill height		39	181	.0038	3.643	<0.001
CU 4: Kinetic energy is the energy of an object in motion		31	198	.0042	3.780	<0.001
CU 10: The speed of the cart is proportional to the height of the hill		46	181	.0045	5.082	<0.001
CU 11: Greater ID or hill height means greater PE	7	45	182	.0050	4.919	<0.001
CU 14: Objects with more mass have greater kinetic energy	3	18	213	.0056	3.273	.001
CU 7: The car has kinetic energy as it goes down the hill	4	18	212	.0063	2.985	.003

NEXT STEPS

Distributed scaffolding where feedback from the teacher and from PyrEval work synergistically to support students

- PyrEval can provide:
 - Timely and immediate feedback to students
 - o Feedback multiple times without burdening the teacher
 - \circ Class-level summaries of the CUs students included in their essays to the teacher

• The teacher can:

- Model how to revise
- Help students reflect on feedback
- Design instruction based on the trends provided to them from the class-level summaries from PyrEval

PROJECT TEAM

UW-Madison Project Team: Sadhana Puntambekar, Dana Gnesdilow, William Goss, Xuesong Cang, Indrani Dey, Linda Malkin

PSU project Team: Rebecca J Passonneau, ChanMin Kim, Eunseo Lee, Zhaohui Li, Mahsa Sheikhi, Adithya Tanam