WISCONSIN

MOTIVATION \& GOALS

- Scientific writing and explanation is a core science practice, but students find it difficult to write and use data as evidence
- Teachers find it challenging to provide comprehensive, constructive feedback in real-time
- NLP technologies can help by providing:

Students with timely and personalized feedback

- Teachers with information about students' progress
- Our goal - Describe how PyrEval (Gao et al., 2018; Passonneau et al. 2018), an NLP technology, was used to: a) automatically assess students' essays and provided feedback and b) help students write about and learn science

Research questions:

- How does automated feedback help students explain key ideas in their science essays?
- What are the opportunities and limitations of using automated feedback in classrooms?

STUDY DESIGN \& CONTEXT

- 264 students, 8 th-grade, 3 public middle schools
- 3-week physics unit on the Law of Conservation of Energy and energy transformations using a roller coaster simulation
- Students used simulations and a digital notebook to conduct experiments and write essays
- Students wrote three essays

Essay 1 (E1) \rightarrow Feedback from PyrEval on Content Units (CUs)
Essay 2 (E2) \rightarrow Feedback from PyrEval on CUs

- Essay 2 revised (E2R)

Table 1. Content units and corresponding feedback

Content Unit (CU)	Idea	If absent, the following comment was integrated into the feedback
CU0 - Height and changes in energy	As the car moves down the hill, kinetic energy increases and potential energy decreases	"How does height affect PE and
KE?"		

Students' Writing (Collaborative Research: Puntambekar)

PennState

Repeated measures analysis:

- Conducted with students who completed all 3 essays ($N=228$)
- Students included significantly more CUs in:
- E2 than in E1 $(M=3.68, S D=2.40)$

E2R $(M=5.05, S D=3.02)$ than E2 $(M=4.77, S D=2.93)$ ($\mathrm{F}_{1,228}=82.1889 ; p<.001 ; n p^{2}=.267$)

Sentence length:

- t-test on essays containing 25 words or fewer per sentence and more than 25 words
- PyrEval identified significantly more CUs when the sentence length was 25 words or less

Other observations:

- Students often
- Used little or no punctuation
- Repeated ideas across multiple sentences or paragraphs \rightarrow more difficult for PyrEval to accurately detect
- Made both successful and unsuccessful revisions based on the feedback

Table 2. Types of successful and less successful responses to feedback

More Successful	Less Successful

Students:

Students:

- better elaborated ideas
- explained directional
relationships based on data
Suggests that the automated feedback helped students think feedback helped students thin about and/or understand more deeply.

RESULTS
Wilcoxon signed-rank tests:

- Significant differences between E1 and E2R for CUs 2, 3, 4, 7, 10, 11, 14
- Students included more of these CUs in E2R compared to their E1
- No significant differences for the other CUs ($0,1,5,6,8,9,12$)

Table 4. Wilcoxon signed-ranks, adjusted α, and z scores for the significant CUs

CU and Meaning	Ranks: Positive (P), Negative (N) Ties (T)			Adjustedα	$\underset{\text { score }}{z}$	$\begin{gathered} p l u e \\ \text { value } \end{gathered}$
	N	P	T			
CU 2: The Law of Conservation of Energy states that energy cannot be created or destroyed, only transformed	4	34	195	. 0036	4.664	<0.001
CU 3: The initial drop height should be higher than the hill height	14	39	181	. 0038	3.643	<0.001
CU 4: Kinetic energy is the energy of an object in motion	5	31	198	. 0042	3.780	<0.00
CU 10: The speed of the cart is proportional to the height of the hill	7	46	181	. 0045	5.082	<0.001
CU 11: Greater ID or hill height means greater PE	7	45	182	. 0050	4.919	<0.001
CU 14: Objects with more mass have greater kinetic energy	3	18	213	. 0056	3.273	. 001
CU 7: The car has kinetic energy as it goes down the hill	4	18	212	. 0063	2.985	. 003

NEXT STEPS

Distributed scaffolding where feedback from the teacher and from PyrEval work synergistically to support students

- PyrEval can provide:
- Timely and immediate feedback to students
- Feedback multiple times without burdening the teacher
- Class-level summaries of the CUs students included in their essays to the teacher

Revision Type	Essay 1 Response
Student improved by explaining the directional relationship between variables from E1 to E2	"I believe the initial drop height should be 5 meters. The PE at the beginining 5 meters was 2443 Joules and the KE at the bottom of the roller coaster was 2443 Joules. This is going to create enough speed/velocity to get us over our hills, loops, and to the end of the roller coaster since it has the most energy."
Feedback	Essay 2 Improvement
Can you explain how height affects PE and KE?	"When we increase the height the PE and total energy go up ... Height is a part of the PE and total energy formula but not the KE formula. For example, when the height was 3 meters, the PE was 2446 Joules and the KE was 0 Joules. But when the height was 5 meters ..."

- The teacher can:
- Model how to revise
- Help students reflect on feedback
- Design instruction based on the trends provided to them from the class-level summaries from PyrEval

PROJECT TEAM

UW-Madison Project Team: Sadhana Puntambekar, Dana Gnesdilow, William Goss Xuesong Cang, Indrani Dey, Linda Malkin
PSU project Team: Rebecca J Passonneau, ChanMin Kim, Eunseo Lee, Zhaohui Li Mahsa Sheikhi, Adithya Tanam

