

Fidelity and Beyond: Developing and Using Implementation Evidence in Research and Development Projects

RESEARCH + PRACTICE COLLABORATORY

Fidelity and Beyond: Developing and Using Implementation Evidence in Research and Development Projects

Common Guidelines (IES & NSF, 2013)

Type of Research	Focus of Implementation Research
Design and development	Develop measures with evidence of technical quality for assessing the implementation of the intervention in an authentic education delivery setting Develop evidence demonstrating the project's success in implementation (feasibility of implementation)
Efficacy, impact, and scale-up	Study reports should document implementation of both the intervention and the counterfactual condition in sufficient detail for readers to judge applicability of the study findings. Identify the organizational supports, tools, and procedures that were key features of the intervention implementation. If no evidence of a favorable impact is found, the project should examine possible reasons (e.g., weaknesses in implementation, evidence that raises questions about particular aspects of the logic model).

Panelists

Bill Penuel (Moderator) University of Colorado Boulder Sara Heredia University of Colorado Boulder Jessica Rigby University of Washington Jennifer Russell University of Pittsburgh

Why "Beyond Fidelity"?

- Fidelity addresses the question, "Is it possible?"
- If the answer is "no," then it is difficult to know why, if implementation research focuses only on whether teachers implemented.
 - Needed are methods for identify the learning problems local actors face
 - Needed are theories relevant to different levels of organization in schools.

Studying Implementation

Policy and implementation research offer multiple lenses for studying implementation:

- Individual-Personal (self-efficacy, knowledge for teaching, stages of concern)
- Interpersonal (social norms, informal collegial interactions)
- Organizational (alignment, competing institutional goals and priorities)

Informing Design

- Design supports to help teachers address some of the challenges to implementing innovations that can be anticipated based on past evidence (Weinbaum & Supovitz, 2010).
- Adapt professional development on the basis of variation in implementation (Harris, Phillips, & Penuel, 2012).

Your Questions

For More Resources

http://researchandpractice.org

http://learndbir.org

Design Based Implementation Research

SCIENCE TEACHERS' COLLECTIVE SENSEMAKING: A CONCEPTUAL AND ANALYTIC FRAMEWORK FOR UNDERSTANDING IMPLEMENTATION

Sara C Heredia University of Colorado, Boulder

PI Dr. Erin Furtak University of Colorado, Boulder

11

Sequencing of 'correct' ideas

Random Mutations	Transformationist incorrect	Variation
Environment tauses change with genetic basis	Transformationist ideas	Variation - unclear or vague
Unclear or Vague	Unclear usage of 'adapt to environment'	No variation
Frait not present	No transformationist ideas	

Grant No. 0953375

Average number of minutes each teacher spent using formative assessment tools in the classroom during the evolution unit each year

Sensemaking

Reorganization of activity after change to work environment **Retrospective and** prospective communication Ambiguity and uncertainty

(Weick, 1995)

Teachers' collective sensemaking

- Interpret and act on messages about reform
- Resources for sensemaking include:
 - Perceptions about teaching and learning
 - Experiences with reform
 - Shared understanding of their students and their school/district

(Coburn, 2001; 2004; Spillane et al. 2002)

Count of teachers' references of organizational aspects of their work environment in professional development meetings at Monroe

Year of PD	Change	Uncertainty or Ambiguity
1	The pacing guide changed from 9 to 6 units of instruction across the school year and moved Evolution to the end of the year.	Teachers were unsure what they needed to teach in the first part of the school year and then were confused about what was left out
2	Kim left the school and Pamela (physics teacher) took over as lead science teacher. The planning responsibility shifted to Donna	How students would act or do during new types of activities. Donna in particular was concerned her students wouldn't focus and get work done.
3 16	The entire administration in Y1 and Y2 were fired and a new administrative staff was hired in their place.	Teachers talked a lot about the expectations for rigor and higher level thinking by the new administration and there was a lot of ambiguity about how that was measured and evaluated.

(Weick, Sutcliffe & Obstfeld, 2005)

18

And to be honest I feel like although we didn't get to all of these [referring to pieces of learning progression]

PD meeting October, year 1 Bracket and label

Retrospective Interpretation

"we had what 2, 3 weeks to teach evolution...we were spending like one day sometimes on these big things so and then having to move on and feeling the crunch and not having enough time to really focus on and I know that's something we've always dealt with. Do we just do surface level on lots of things or do we go deep on a few?"

PD meeting October, year 1 Bracket and label

I think that's going to make a big difference this year because we aren't doing deep surface on a lot we are going to be doing deep on a few.

Plausible Pathway Forward

Well and without having seen the [pacing guide] as far as it goes with natural selection, evolution, it's hard to pick where we should go

Implications

- Supports localized design and implementation
- Local sources of ambiguity and uncertainty

Acknowledgments

- Thank you to Bill Penuel and Erin Furtak for their feedback.
- I also want to thank the teachers at Monroe for their hard work and dedication to our professional development

This material is based upon work supported by the National Science Foundation under Grant No. 0953375. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. VANDERBILT VANDERBILT

Teacher Learning Opportunities: changes in the framing of teacher instructional talk in collaborative meetings

Jessica G. Rigby Vanderbilt University, Peabody College (soon to be University of Washington)

> Christine Andrews-Larson Florida State University

I-Chien Chen Michigan State University

One mechanism: teacher collaborative time

(Louis & Kruse, 1995; McLaughlin & Talbert, 2006) Significant reorganization of teacher practice (Cobb & Jackson, 2011)

In teacher Need for collaborative time: teacher opportunity to think learning about, talk about, and plan mathematics and math pedagogy • conceptually

Big Picture Goal: support district implementation of high quality, inquiry-oriented math instruction MIST: Middle School Mathematics and the Institutional Setting of Teaching

- What does it take to improve middle school mathematics instruction at the scale of a large urban district in the US?
- Relevant data sources:

 Interpersonal: informal advice networks and audio transcripts

Study Sample

- Case study (Yin, 2003): Creekside Middle School, 2009-2011
- Primary data sources:

 Audio recordings of teacher collaborative time (TCT) focused on instruction
 (Informal Advice Network Surveys)

Conceptual Frame

Framing Theory (Cress & Snow, 2000)

Diagnostic Framing:

- How to help students learn math
- How to help students succeed on tests
- Students can not learn

Prognostic Framing:

- Adjust Instruction
- Cover topics
- o Other

Nature and Depth of Talk about Mathematics

(Horn & Little, 2010; Stein & Lane, 1996)

How Teachers Talked about Mathematics

Concepts and Explanations

 a. "Conceptual Lite"

 Terms and Procedures
 Topic Only

Methods: Analysis

- Qualitative Analysis of Audio Transcripts:

 Coded in NVivo with deductive and inductive codes
 Memos, matrices
- Analysis of District Context

 Examined qualitative and quantitative data across all schools in the district over the same time period to contextualize the findings

Finding One: Content of Mathematics

Finding Two: Prognoses

Finding Three: Diagnoses

Finding Four: Role of Administrator

Administrative Framing

Administrator Presence

Implications for Design: *Teachers*

- Kind of math mattered
 - Conceptual lite is unlikely to help students know how to apply mathematical concepts to standardized tests.
 - Given administrator (and district and federal) press on student success on standardized tests, teachers will likely revert to teaching procedures.
 - Need to build teacher capacity to concepts & explanations.

Implications for Design: *Administrators*

- Administrator press can shift teachers' attention
 - Provide aligned PD for principals (and APs) as well as teachers, so that they are able to either
 - A) give substantive support in implementation (if they have deep content knowledge)
 - B) press for ambitious practices (if they don't have deep content knowledge)

Thank you!

Jessica G. Rigby jrigby@uw.edu

Social resources for the implementation of ambitious instructional reform

Jennifer Lin Russell University of Pittsburgh

Scaling Up Mathematics Study

 NSF-funded longitudinal study of the implementation of <u>ambitious mathematics curricula</u> in two urban district: Region Z & Greene

Scaling Up Mathematics Study

 NSF-funded longitudinal study of the implementation of <u>ambitious mathematics curricula</u> in two urban district: Region Z & Greene

<u>Ambitious mathematics instruction =</u>

- High cognitive demand tasks
- Support for student thinking
- Intellectual authority vested in the discipline

Scaling Up Mathematics Study

- NSF-funded longitudinal study of the implementation of ambitious mathematics curricula in two urban district: Region Z & Greene
- Participating schools
 - 8 elementary schools (4 per district)
 - 48 teachers
- Data (collected at 5 time points over 3 years)
 - Interviews with teachers, coaches, principals, district leaders
 - Observations of classroom instruction, meetings, professional development

Study districts' capacity for ambitious instruction

Implementation quality significantly higher in Greene

Stein & Kaufman, 2010

Study districts' capacity for ambitious instruction

Social support for instruction: Egocentric math advice networks

Social networks as a source of social capital

Social networks as a source of social capital

Depth of	of Interac	ction, by	School
-	<i>v</i>		

lioh
11511
0 (0)
0 (0)
0 (0)
1 (1)
1 (10)
2 (9)
0 (9)
7 (8)

Note. n = 315 interactions in Region Z; n = 443 interactions in Greene.

Depth of Interaction, by School

	% (n)					
District	Low	Moderate	High			
Region Z						
School A	93.8 (45)	6.2 (3)	0.0 (0)			
School B	82.9 (63)	17.1 (13)	0.0 (0)			
School C	81.7 (85)	18.3 (19)	0.0 (0)			
School D	78.2 (68)	20.7 (18)	1.1 (1)			
Greene						
School E	59.3 (73)	32.5 (40)	8.1 (10)			
School F	52.3 (46)	37.5 (33)	10.2 (9)			
School G	58.0 (65)	33.9 (38)	8.0 (9)			
School H	39.2 (47)	54.2 (65)	6.7 (8)			

Note. n = 315 interactions in Region Z; n = 443 interactions in Greene.

Depth of Interaction, by School

	% (n)				
District	Low	Moderate	High		
Region Z					
School A	93.8 (45)	6.2 (3)	0.0 (0)		
School B	82.9 (63)	17.1 (13)	0.0 (0)		
School C	81.7 (85)	18.3 (19)	0.0 (0)		
School D	78.2 (68)	20.7 (18)	1.1 (1)		
Greene					
School E	59.3 (73)	32.5 (40)	8.1 (10)		
School F	52.3 (46)	37.5 (33)	10.2 (9)		
School G	58.0 (65)	33.9 (38)	8.0 (9)		
School H	39.2 (47)	54.2 (65)	6.7 (8)		

Note. n = 315 interactions in Region Z; n = 443 interactions in Greene.

Depth of Interaction, by School

	% (n)					
District	Low	Moderate	High			
Region Z						
School A	93.8 (45)	6.2 (3)	0.0 (0)			
School B	82.9 (63)	17.1 (13)	0.0 (0)			
School C	81.7 (85)	18.3 (19)	0.0 (0)			
School D	78.2 (68)	20.7 (18)	1.1 (1)			
Greene						
School E	59.3 (73)	32.5 (40)	8.1 (10)			
School F	52.3 (46)	37.5 (33)	10.2 (9)			
School G	58.0 (65)	33.9 (38)	8.0 (9)			
School H	39.2 (47)	54.2 (65)	6.7 (8)			

Note. n = 315 interactions in Region Z; n = 443 interactions in Greene.

System & school leaders influenced social supports

District policy influences teachers' social networks

Supporting sustainability of ambitious instruction

- In year 3 of the study, Greene largely withdrew supports for implementation of *Investigations*
 - Reduced allocation of coaching resources & math PD
 - Reduced grade level team time focused on math
 - Reduced the amount of time for math instruction in elementary schools from 90 to 60 minutes
- Despite a shift in district reform priorities
 - 7 teachers sustained high quality instruction
 - 5 were not able to sustain high quality enactment

Supporting sustainability of ambitious instruction

- In year 3 of the study, one of the study districts largely withdrew supports for implementation of Investigations
 - Reduced allocation of coaching resources & math PD

elementary schools from 90 to 60 minutes

- Despite a shift in district reform priorities
 - 7 teachers sustained high quality instruction
 - 5 were not able to sustain high quality enactment

Study methods

- What aspects of teachers' social networks are consequential for sustained reform-related instruction?
- Longitudinal analysis of teachers' egocentric advice networks in the Greene district (N=12)
- Employed Qualitative Comparative Analysis to detect relationships between complex sets of network variables and instructional outcomes

Year 1			Year 2			Year 3
Depth	Expertise	Strong ties	Depth	Expertise	Strong Ties	High Quality Instruction

	Year 1			Year 2			Year 3
	Depth	Expertise	Strong ties	Depth	Expertise	Strong Ties	High Quality Instruction
1				Х	Х	Х	Y

	Year 1			Year 2			Year 3
	Depth	Expertise	Strong ties	Depth	Expertise	Strong Ties	High Quality Instruction
1				Х	Х	Х	Y
2	Х	Х	Х				Y

	Year 1			Year 2			Year 3
	Depth	Expertise	Strong ties	Depth	Expertise	Strong Ties	High Quality Instruction
1				Х	Х	Х	Y
2	Х	Х	Х				Y
3		Х	Х	Х			Y

Math advice network and reform sustainability

	Year 1			Year 2			Year 3
	Depth	Expertise	Strong ties	Depth	Expertise	Strong Ties	High Quality Instruction
1				Х	Х	Х	Y
2	Х	Х	Х				Y
3		Х	Х	Х			Y

Support from teachers' math advice networks in years 1 and 2 enabled them to achieve the **understanding of the curriculum and its pedagogical approach** that enabled them to continue to enact it flexibly under different conditions

Implications for STEM reform

- The quality of teachers' social networks is associated with their capacity to sustain reform-oriented mathematics instruction
- District and school level leaders can influence the quality of teachers social networks, in turn supporting reform sustainability
- Engineering social supports should attend to the structure and content of teachers professional interactions

References

- Coburn, C.E. & Russell, J. (2008). District policy and teachers' social networks. Educational Evaluation and Policy Analysis, 30, 203-235.
- Coburn, C. E., Russell, J. L., Kaufman, J., & Stein, M. K. (2012). Supporting sustainability: Teachers' advice networks and ambitious instructional reform. American Journal of Education, 119(1), 137-182.
- Stein, M.K., & Kaufman, J. (2010). Selecting and supporting the use of mathematics curriculum at scale. American Educational Research Journal, 47(3), 663-693