SchoolWide Labs: Supporting the Integration of Computational Thinking into Middle School Science through Curriculum and Professional Development

Tamara Sumner (PI, sumner@colorado.edu), Alexandra Gendreau Chakarov, Katie Van Horne, Jennifer Jacobs, William Penuel, Mimi Recker, Stephanie Hervey, Susan Olezene, Shelby Landsman

Professional Development Workshops

1. Develop professional learning processes and tools to support the integration of computational thinking into middle school science using a sensing platform
2. Deepen students’ interest and engagement in computational thinking

Year One Summary

1. Teacher advisory board (TAB: 4 science/STEM teachers) engaged in:
 - Year-long professional development
 - Co-designing a CT-integrated unit
 - Implementing the unit with their students
2. Professional development workshops focused on:
 - Unpacking computational thinking
 - Working with sensors and considering how to introduce them to students
 - Understanding the Next Generation Science Standards
 - Co-designing a storyline that integrated CT into middle school science, using environmental sensors
 - Viewing videos to reflect on instruction, student learning, CT integration, and curriculum development
3. Pilot Study implementation - data collected from teachers & students

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. 1742053 and Grant No. 1742046.

Project Goals

- CT Integration Cycle
- SchoolWide Labs
- School Sensing Platform

PD Workshop 1
- Get teachers excited about project
- Introduce CT sensors & NGSS storyline approach

PD Workshop 2
- Unpack CT
- Prepare TAB for pilot study implementation

PD Workshop 3
- Watch videos from pilot study and reflect on mold unit implementation

PD Workshop 4
- Design challenge using second version of sensor system
- Phenomena brainstorm

Pilot Study: Can Mold Grow in Our School?

Methods / Data collection
- Spring 2018 over 5 days
- 4 Teachers: Grades 5-8
- 270 Students
- Data: Video, observations, teacher and student interviews, student exit tickets (SEETs)

Day 1: Mold can close schools
- Watch video about mold shutting down a school
- Generate driving question board about mold

Day 2: Learn about mold
- Read case studies to determine what mold needs to grow

Day 3: Design investigation to look for mold in our school
- Use knowledge learned in day 2 and sensors

Day 4: Analyze data to make an argument for/against the potential for mold growth in our school
- Analyze the data collected to answer the question: Could mold grow here?

Day 5: Share results with class
- Share results to determine where mold is most likely to grow in our school

Lessons Learned from PD Workshops

- TAB ideas about computational thinking expanding, but more work is needed to fully integrate their thinking about computational thinking, data science, and science content
- Excited about possibilities of sensor system version 2
 - See data collected in real time
 - More control over the sensor system
- Finding sensor friendly phenomena aligning with performance expectations in science is challenging

Lessons Learned from Pilot Study

- TAB successfully implemented mold unit
- Students interested and engaged throughout the implementation
- Data analysis was cut short
 - The curriculum needs to be longer than five days
 - Sensor use limited to one day
 - Integrate sensors throughout the unit (potentially through design challenges)

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. 1742053 and Grant No. 1742046.