Teachers

Implementation and Efficacy Study of Preschool Math Activities for Numeracy

This project explores how teachers can use activities with young children to develop their knowledge of numbers and patterns. Part of the study examines how much guidance teachers should provide to students. The project also explores the design of resources that are the most likely to be used by preschool teachers and that can be easily incorporated into their teaching of young children.

Lead Organization(s): 
Award Number: 
2010547
Funding Period: 
Wed, 07/15/2020 to Sun, 06/30/2024
Full Description: 

Math games and play engage young children's interest in patterns, numbers and logic. In preschools, there is a critical need for math instruction and learning. Early childhood is an important point for children to learn about mathematics. Children's play-based activities provide natural opportunities for them to explore and learn math topics. This project explores how teachers can use activities with young children to develop their knowledge of numbers and patterns. Part of the study examines how much guidance teachers should provide to students. The project also explores the design of resources that are the most likely to be used by preschool teachers and that can be easily incorporated into their teaching of young children. The study of the use of play-based mathematics activities will support critical early learning of number concepts.

This project will investigate the implementation and efficacy of the preschool math games for mathematics learning. The research would study the materials as used in classrooms by teachers in order to understand how the materials improve early numeracy skills, and whether children's improvement is affected by how the activities are implemented in the classroom. The research questions for the study examine the role of the teacher in providing guidance to children when engaging in the numeracy activities and how the materials influence children's early numeracy skills. The study employs an experimental design to study different implementation pathways. The design would examine the impact of two different instructor types and two levels of guidance for the preschool students when using the activities. Data collected will include measures of children's mathematical knowledge and teachers' pedagogical self-efficacy and content knowledge.

Enhancing Rational Number Instruction for Students with Math Disabilities and Difficulties: Designing Professional Development for Teachers Who Provide Math Intervention

The project will develop and study a professional development program focused on fraction for interventionists who work with grades four and five students with mathematics disabilities and difficulties.

Lead Organization(s): 
Award Number: 
2010038
Funding Period: 
Wed, 07/15/2020 to Sun, 06/30/2024
Full Description: 

The project will develop and study a professional development program focused on fraction for interventionists who work with grades four and five students with mathematics disabilities and difficulties. Mathematics interventions for students with mathematical disabilities are provided by a variety of educators in elementary schools including classroom teachers, special education teachers, mathematics specialists, and paraprofessionals. However, professional development and training to address the needs of students with mathematics disabilities and difficulties varies. This project addresses a need in elementary schools for improved fraction instruction and the professional development for interventionists who work with students. The project would create resources usable by other professional development projects for interventionists. The project will also provide guidance about professional development for other mathematics topics.

The professional development will be focused on fractions concepts, use interactive and hands-on methods for learning, and be relevant because fractions are a critical topic in upper elementary grades. The participants in the student are interventionists who work with grades 4 and 5 students. The project includes a design phase followed by a randomized controlled trial to measure teacher-level outcomes. Measures of instruction, student knowledge and teacher outcomes will be used to understand the promise of the intervention. Interventionist teaching practice and fractions knowledge will be used as the proximal outcomes and will be analyzed using ANCOVAs with the pretest measures serving as the covariates. For distal outcomes related to fourth- and fifth-grade students' fractions achievement, a multi-level model including students and interventionists will be used. As an early stage design and development project, the design is being tested in multiple districts in different states. The project relies on prior research about students' learning of fractions and related teaching approaches. The results should inform professional development for interventionists for students with mathematical disabilities and difficulties. The results also support understanding of professional development that develops teachers' knowledge of content and teaching practice simultaneously.

Incorporating Professional Science Writing into High School STEM Research Projects

The goal of this project is to expand high school student participation in the peer-review process and in publishing in JEI, a science journal dedicated to mentoring pre-college students through peer-reviewed publication. By publishing pre-college research in an open access website, the project will build understanding of how engaging in these activities can change high school students' perceptions and practices of scientific inquiry.

Lead Organization(s): 
Award Number: 
2010333
Funding Period: 
Wed, 07/15/2020 to Fri, 06/30/2023
Full Description: 

This exploratory project addresses important challenge of incorporating disciplinary literacy practices in scientific inquiry projects of high school students. The project will incorporate the peer-review process and publication in the Journal of Emerging Investigators (JEI). The Next Generation Science Standards emphasize constructs from disciplinary literacy such as engaging in argument from evidence, and evaluating and communicating information. However, there are few resources available to students and teachers that integrate these constructs in authentic forms that reflect the practices of professional scientists. High school student learners engage in scientific inquiry, but rarely participate in authentic forms of communication, forms that are reflective of how scientists communicate and participate in the primary literature of their fields. The project has three aims: 1) Generate knowledge of the impact of peer-review and publication on perceptions and skills of scientific inquiry and STEM identity, 2) Generate knowledge of how participation in peer-review and publication are impacted by contextual factors (differences in mentors and research contexts), and 3) Develop JEI field-guides across a range of contexts in which students conduct their research.

The goal of the project is to expand high school student participation in the peer-review process and in publishing in JEI, a science journal dedicated to mentoring pre-college students through peer-reviewed publication. By publishing pre-college research in an open access website, the project will build understanding of how engaging in these activities can change high school students' perceptions and practices of scientific inquiry. The project will investigate how participation in peer-reviewed publications will have an impact on student learning by administering a set of pre- and post-surveys to students who submit a paper to JEI. The project will expand student participation in JEI via outreach to teachers in under-resourced and remote areas by delivering virtual and in-person workshops which will serve to demystify peer review and publication, and explore ways to integrate these processes into existing inquiry projects. Other efforts will focus on understanding how student contextual experiences can impact their learning of scientific inquiry. These student experiences include the location of the project (school, home, university lab), the type of mentor they have, and how they became motivated to pursue publication of their research. The project will recruit students from under-resourced schools in New York through a collaboration with MathForAmerica and from rural areas through outreach with STEM coordinators in the Midwest. The resources created will be disseminated directly on the JEI website.

Assessing College-Ready Computational Thinking (Collaborative Research: Wilson)

The goal of this project is to develop learning progressions and assessment items targeting computational thinking. The items will be used for a test of college-ready critical reasoning skills and will be integrated into an existing online assessment system, the Berkeley Assessment System Software.

Award Number: 
2010314
Funding Period: 
Tue, 09/01/2020 to Sat, 08/31/2024
Full Description: 

Because of the growing need for students to be college and career ready, high-quality assessments of college readiness skills are in high demand. To realize the goal of preparing students for college and careers, assessments must measure important competencies and provide rapid feedback to teachers. It is necessary to go beyond the limits of multiple-choice testing and foster the skills and thinking that lie at the core of college and career ready skills, such as computational thinking. Computational thinking is a set of valuable skills that can be used to solve problems, design systems, and understand human behavior, and is thus essential to developing a more STEM-literate public. Computational thinking is increasingly seen as a fundamental analytical skill that everyone, not just computer scientists, can use. The goal of this project is to develop learning progressions and assessment items targeting computational thinking. The items will be used for a test of college-ready critical reasoning skills and will be integrated into an existing online assessment system, the Berkeley Assessment System Software.

The project will address a set of research questions focused on 1) clarifying computational thinking constructs, 2) usability, reliability of validity of assessment items and the information they provide, 3) teachers' use of assessments, and 4) relationships to student performance. The study sample of 2,700 used for the pilot and field tests will include all levels of students in 10th through 12th grade and first year college students (both community college and university level). The target population is students in schools which are implementing the College Readiness Program (CRP) of the National Mathematics and Science Institute. In the 2020-21 academic year 54 high schools across 11 states (CA, GA, FL, ID, LA, NC, NM, OH, TX, VA, and WA) will participate. This will include high school students in Advanced Placement classes as well as non-Advanced Placement classes.  The team will use the BEAR Assessment System to develop and refine assessment materials. This system is an integrated approach to developing assessments that seeks to provide meaningful interpretations of student work relative to cognitive and developmental goals. The researchers will gather empirical evidence to develop and improve the assessment materials, and then gather reliability and validity evidence to support their use. In total, item response data will be collected from several thousand students. Student response data will be analyzed using multidimensional item response theory models.

Creating a Model for Sustainable Ambitious Mathematics Programs in High-Need Settings: A Researcher-Practitioner Collaboration

This project will study a successful, ambitious mathematics reform effort in high-needs secondary schools. The goal is to develop resources and tools to support other high-needs schools and districts in transforming and sustaining  their mathematics programs. The model focuses on the resources required for change and the aspects of the organization that support or constrain change in mathematics teaching and learning.

Lead Organization(s): 
Award Number: 
2010111
Funding Period: 
Sat, 08/01/2020 to Wed, 07/31/2024
Full Description: 

A long-standing challenge in secondary mathematics education is broadening participation in STEM. Reform of schools and districts to support this goal can be challenging to sustain. This implementation and improvement project will study a successful, ambitious mathematics reform effort in high-needs secondary schools. The goal is to develop resources and tools to support other high-needs schools and districts in transforming and sustaining  their mathematics programs. The model focuses on the resources required for change and the aspects of the organization that support or constrain change in mathematics teaching and learning. The project team includes school district partners that have successfully transformed mathematics teaching to better support students' learning.

The project will develop a model for understanding the demands and resources from an organizational perspective that support ambitious mathematics teaching and learning reforms. Demands are requirements for physical resources or efforts that need to be met in the instructional system. Resources are the material, human, instructional, and organizational requirements needed to address demands. The project will develop the model through a collaboration of researchers, professional development leaders, students, teachers, coaches, and administrators to: (1) understand the demands created throughout a school or district when implementing an ambitious secondary mathematics program in a high-need context; (2) identify the resources and organizational dynamics necessary to address the demands and thus sustain the program; and (3) articulate a model for a sustainable ambitious secondary mathematics program in high-need settings that has validity across a range of implementation contexts. To develop the model over multiple iterations, the project will examine the demands and resources related to implementing an ambitious mathematics program, the perspectives of stakeholders, the organizational structure, and the program goals and implementation. The project will also conduct a systematic literature review to bring together findings from the successful district and other research findings. The data collection and analysis process will include interviews, document analysis, collection of artifacts, and observations across four phases of the project.  Participants will include students, teachers, instructional support personnel, and administrators (from schools and the district).

Storytelling for Mathematics Learning and Engagement

This project will collect and curate digital stories of diverse mathematicians sharing stories of their learning within and beyond schools. These short videos will become part of a more extensive digital database of mathematics stories that will be aligned with K-8 mathematics topics and then materials will be developed for teachers to use. The project team will explore the use of mathematics storytelling on K-8 teacher and student mathematics learning and engagement.

Award Number: 
2010276
Funding Period: 
Wed, 07/01/2020 to Fri, 06/30/2023
Full Description: 

Mathematics education in the United States has long been challenged by three key issues this project seeks to address: (a) narrow conceptions of mathematics as a discipline (b) the lack of racially/ethnically diverse role models for mathematics in terms of representation in the public imagination, media, and schools; and (c) a paucity of resources for instruction to harness students' early interest and engagement in mathematics across racial and gender groups. One promising way to expose teachers and students to a variety of images and diversity of models of mathematics is to include images of diverse people telling their stories about their doing and knowing of mathematics. Although storytelling is a natural part of human activity and is used extensively in other elementary school subjects like social studies and language arts, it is not usually found in elementary mathematics. As part of this three-year project, the project team will collect and curate digital stories of diverse mathematicians sharing stories of their learning within and beyond schools. These short videos will become part of a more extensive digital database of mathematics stories that will be aligned with K-8 mathematics topics and then materials will be developed for teachers to use. Throughout this work, the project team will explore the use of mathematics storytelling on K-8 teacher and student mathematics learning and engagement.

This project responds to calls for improved equity and access to rich, rigorous math: to contribute to understanding a more equitable K-12 pedagogy; to disrupt racial inequities in math (and STEM, more broadly) through culturally responsive and inclusive instructional practice; and to enhance teachers' instructional practice. The first phase of the work will involve collecting and curating a set of digital stories told by mathematicians. Then, through two cycles of design and piloting, the project team will work with participating teachers and students to finalize the design of the videos and associated instructional materials. A sample of pilot teachers will be purposefully selected to account for diversity in region, school population, and experience level of teachers. The research team will also design grade-level appropriate research instruments, collect surveys, and conduct interviews to investigate both teachers' and students' conceptions of mathematics, their conceptions of who "belongs" in mathematics, and teachers' instructional practice with the storytelling materials themselves. Their analysis will draw on quantitative and qualitative research methods. For example, they will use narrative inquiry to examine teachers' and students' experiences with the videos. Using the research findings, the project will make available samples of teachers' pedagogical repertoires related to these videos and demonstrate how storytelling can be used as an effective mechanism for mathematics teaching and learning. Products from this project will include a digital database and supporting instructional materials for teachers, school leaders, and professional developers to use. The dissemination of this research will contribute to building models for mathematics education that serve to deepen understanding of mathematics of teachers and students, as well as simultaneously empowering students of all backgrounds, but especially underserved students, to activate and pursue their interests in mathematics.

Geological Construction of Rock Arrangements from Tectonics: Systems Modeling Across Scales

This project will create two curriculum units that use sophisticated simulations designed for students in secondary schools that integrate the study of the tectonic system and the rock genesis system. The project seeks to overcome the more typical approaches taken in earth science classrooms where such geologic processes are treated as discrete and highly predictable, rather than intertwined and dynamic.

Lead Organization(s): 
Award Number: 
2006144
Funding Period: 
Thu, 10/01/2020 to Mon, 09/30/2024
Full Description: 

Plate tectonics is the fundamental theory of geology that underlies almost all geological processes, including land and rock formation. However, the geologic processes and immense timeframes involved are often misunderstood. This study will create two curriculum units that use sophisticated simulations designed for students in secondary schools. The simulations will integrate the study of the tectonic system and the rock genesis system. Data from the simulations would be students' sources of evidence. For instance, the Tectonic Rock Explorer would use a sophisticated modeling engine that uses the physics involved in geodynamic data to represent compressional and tensional forces and calculate pressure and temperature in rock forming environments. This project seeks to overcome the more typical approaches taken in earth science classrooms where such geologic processes are treated as discrete and highly predictable, rather than intertwined and dynamic. In addition, this study would include work on students with disabilities in earth science classrooms and explore the practices that seem to be particularly useful in helping understand these systems. By working with simulations, the researchers intend to engage students in scientific practices that are more authentic to the ways that geologists work. The researchers will study if and how these simulations and the computer-based tools allow students to observe and manipulate processes that would be may otherwise be inaccessible.

This work follows on from prior work done by the Concord Consortium on simulations of earth systems. The design and development progression in Years 1 and 2 would create two units. The first module focuses on the relationship between tectonic movement and rock formation. The second would investigate geochronology and dating of rock formations. The researchers would work with 3 teachers (and classes), and then 15 teachers (and classes) using automated data logs, class observations, and video of students working in groups in Years 1 and 2. Professional development for teachers would be followed by the creation of educative materials. Researchers will also develop the framework for an assessment tool that includes understanding of geologic terms and embedded assessments. The researchers will used a mixed methods approach to analyze student data, including analyses cycles of analysis of students pre- and post-test scores on targeted concepts, reports of student performances on tasks embedded in the simulations, and the coding of videos to analyze discourse between partners and the supports provided by teachers. Teacher data will be analyzed using interviews, surveys and journals, with some special focus on how they are seeing students with identified disabilities respond to the materials and simulations. The research team intends to make materials widely available to thousands of students through their networks and webpages, and pursue outreach and dissemination in scholarly and practitioner conferences and publications.

Reaching Across the Hallway: An Interdisciplinary Approach to Teaching Computer Science in Rural Schools

This project will develop, test, and refine a "train-the-trainer" professional development model for rural teacher-leaders. The project goal is to design and develop a professional development model that supports teachers integrating culturally relevant computer science skills and practices into their middle school social studies classrooms, thereby broadening rural students' participation in computer science.

Lead Organization(s): 
Award Number: 
2010256
Funding Period: 
Wed, 07/01/2020 to Sun, 06/30/2024
Full Description: 

Strengthening computer science (CS) and computational thinking (CT) education is a national priority with particular attention to increasing the number of teachers prepared to deliver computer science courses. For rural schools, that collectively serve more than 10 million students, it is especially challenging. Rural schools find it difficult to recruit and retain STEM teachers that are prepared to teach computer science and computational thinking. This project will develop, test, and refine a "train-the-trainer" professional development model for rural teacher-leaders. The project will build teachers' self-efficacy to deliver computer science concepts and practices into middle school social studies classrooms. The project is led by CodeVA (a statewide non-profit in Virginia), in partnership with TERC (a STEM-focused national research institution) and the University of South Florida College of Education, and in collaboration with six rural school districts in Virginia. The project goal is to design and develop a professional development model that supports teachers integrating culturally relevant computer science skills and practices into their middle school social studies classrooms, thereby broadening rural students' participation in computer science. The professional development model will be designed and developed around meeting rural teachers, where they are, geographically, economically, and culturally. The model will also be sustainable and will work within the resource constraints of the rural school district. The model will also be built on strategies that will broadly spread CS education while building rural capacity.

The project will use a mixed-methods research approach to understand the model's potential to build capacity for teaching CS in rural schools. The research design is broken down into four distinct phases; planning/development prototyping, piloting and initial dissemination, an efficacy study, and analysis, and dissemination. The project will recruit 45 teacher-leaders and one district-level instructional coach, 6th and 7th-grade teachers, and serve over 1900 6th and 7th-grade students. Participants will be recruited from the rural Virginia school districts of Buchanan, Russell, Charlotte, Halifax, and Northampton. The research question for phase 1 is what is each district's existing practice around computer science education (if any) and social studies education? Phases 2, 3 and 4 research will examine the effectiveness of professional development on teacher leadership and the CS curricular integration. Phase 4 research will examine teacher efficacy to implement the professional development independently, enabling district teachers to integrate CS into their social studies classes. Teacher data sources for each phase include interviews with administrators and teachers, teacher readiness surveys, observations, an examination of artifacts, and CS/CT content interviews. Student data will consist of classroom observation and student attitude surveys. Quantitative and qualitative data will be triangulated to address each set of research questions and provide a reliability check on findings. Qualitative data, such as observations/video, and interview data will be analyzed through codes that represent expected themes and patterns related to teachers' and coaches' experiences. Project results will be communicated through presentations at conferences such as Special Interest Group on Computer Science Education, the Computer Science Teachers Association (CSTA), the National Council for Social Studies (NCSS), and the American Educational Research Association. Lesson plans will be made available on the project website, and links will be provided through publications and newsletters such as the NCSS Middle-Level Learner, NCSS Social Education, CSTA the Voice, the NSF-funded CADREK12 website and the NSF-funded STEM Video Showcase.

Developing Teachers' Epistemic Cognition and Teaching Practices for Supporting Students' Epistemic Practices with Scientific Systems

This project uses a new theoretical framework that specifies criteria for developing scientific thinking skills that include the value that people place on scientific aims, the cognitive engagement needed to evaluate scientific claims, and the scientific skills that will enable one to arrive at the best supported explanation of a scientific phenomenon.

Lead Organization(s): 
Award Number: 
2009803
Funding Period: 
Wed, 07/01/2020 to Sun, 06/30/2024
Full Description: 

This project aims to investigate needs and challenges in developing an informed public able to evaluate empirical evidence generated from scientific activities. At the core of this research are two intertwined issues: (1) epistemic practices--how people acquire knowledge of science and how they evaluate knowledge sources; and (2) how people improve their abilities to evaluate these knowledge sources so as to improve their abilities to develop and use scientific knowledge. While much science education research has focused on helping students develop these abilities such as through scientific argumentation and modeling (hereafter referred to as scientific thinking), much less research has focused on how teachers acquire this understanding and how their understanding informs their instruction. Until recently, the science education field has lacked a comprehensive framework to support the acquisition, evaluation, and use of scientific knowledge sources. This project uses a new theoretical framework that specifies criteria for developing these scientific thinking skills that include, among others, the value that people place on scientific aims, the cognitive engagement needed to evaluate scientific claims, and the scientific skills that will enable one to arrive at the best supported explanation of a scientific phenomenon. The project will work with high school biology teachers to investigate their own understanding of scientific thinking, how it can be improved through professional development, and how this improvement can translate into practice to support student learning.

The project will work with 20 teachers and classrooms that will impact approximately 1500 to 3000 students. Teachers will act as design collaborators in three iterations of design and development activities with a goal to produce effective professional development supports with proven student outcomes that can be broadly disseminated. Data collection each year will entail: (1) 40 to 60 video-recordings of teacher instruction and student interactions; (2) Content and pedagogical content knowledge surveys from teachers and students; (3) Teacher pre- and post-interviews; and (4) Teacher and student artifacts that demonstrate the extent to which scientific thinking has been achieved. The data will be analyzed through a mixed-methods approach. Qualitative data will be analyzed through validated coding manuals that specify a range of abilities in scientific thinking. Likert-scale and open-ended survey questions will be used to measure changes in instruction and learning outcomes in various factors related to the research goals.

Opening Pathways into Engineering through an Illinois Physics and Secondary Schools Partnership

The Illinois Physics and Secondary Schools (IPaSS) Partnership Program responds to disparities in student access to high-quality, advanced physics instruction by bringing together Illinois high school physics teachers from a diverse set of school contexts to participate in intensive PD experiences structured around university-level instructional materials.

Award Number: 
2010188
Funding Period: 
Sat, 08/01/2020 to Wed, 07/31/2024
Full Description: 

This project will conduct research and teacher professional development (PD) to adapt university-level instructional materials for implementation by high school teachers in their physics courses. Access to high-quality, advanced physics instruction in high school can open pathways for students to attain university STEM degrees by preparing them for the challenges faced in gatekeeping undergraduate physics courses. Yet, across the nation, access to such advanced physics instruction is not universally available, particularly in rural, urban, and low-income serving districts, in which instructional resources for teachers may be more limited, and physics teacher isolation, under-preparation and out-of-field teaching are most common. The Illinois Physics and Secondary Schools (IPaSS) Partnership Program responds to these disparities in student access by bringing together Illinois high school physics teachers from a diverse set of school contexts to participate in intensive PD experiences structured around university-level instructional materials. This program will help teachers adapt, adopt, and integrate high-quality, university-aligned physics instruction into their classrooms, in turn opening more equitable, clear, and viable pathways for students into STEM education and careers.

The IPaSS Partnership Program puts education researchers, university physics instructors, and teacher professional development staff at the University of Illinois at Urbana-Champaign (U of I) in collaboration with in-service high school physics teachers to adapt university physics curricula and pedagogies to fit the context of their high school classrooms. The project will adapt two key components of U of I's undergraduate physics curriculum for high school use by: (1) using a web-based "flipped" platform, smartPhysics, which contains online pre-lectures, pre-labs and homework and (2) using research-based physics lab activities targeting scientific skill development, utilizing the iOLab wireless lab system - a compact device that contains all sensors necessary for hundreds of physics labs with an interface that supports quick data collection and analysis. The program adopts two PD elements that support sustained, in-depth teacher engagement: (1) incremental expansion of the pool of teachers to a cohort of 40 by the end of the project, with a range of physics teaching assignments and work collaboratively with a physics teaching community to develop advanced physics instruction for their particular classroom contexts, (2) involvement in a combination of intensive summer PD sessions containing weekly PD meetings with university project staff that value teachers' agency in designing their courses, and the formation of lasting professional relationships between teachers. The IPaSS Partnership Program also addresses needs for guidance, support and resources as teachers adapt to the shifts in Advanced Placement (AP) Physics standards. The recent revised high school physics curriculum that emphasizes deep conceptual understanding of central physical principles and scientific practices will be learned through the inquiry-based laboratory work. The planned research will address three central questions: (1) How does IPaSS impact teachers' practice? (2) Does the program encourage student proficiency in physics and their pursuit of STEM topics beyond the course? (3) What aspects of the U of I curricula must be adapted to the structures of the high school classroom to best serve high school student populations? To answer these questions, several streams of data will be collected: Researchers will collect instructional artifacts and video recordings from teachers' PD activities and classroom teaching throughout the year to trace the development of teachers' pedagogical and instructional development. The students of participating teachers will be surveyed on their physics knowledge, attitudes, and future career aspirations before and after their physics course, video recordings of student groupwork will be made, and student written coursework and grades will be collected. Finally, high school students will be surveyed post-graduation about their STEM education and career trajectories. The result of this project will be a community of Illinois physics teachers who are engaged in continual development of advanced high school physics curricula, teacher-documented examples of these curricula suited for a range of school and classroom contexts, and a research-based set of PD principles aimed at supporting students' future STEM opportunities and engagement.

Pages

Subscribe to Teachers