Educational Technology

Developing an Online Game to Teach Middle School Students Science Research Practices in the Life Sciences (Collaborative Research: Gagnon, Baker, and Metcalf)

Principal Investigator:

Aqualab is an online video game to teach scientific practices in the context of life sciences for middle school. Students use science practices of experimentation, modeling, and argumentation to investigate questions related to aquatic ecosystems. The project is developing and scaffolding layers of science practices within the gameplay, and exploring how learning progressions can be empirically derived from game data. The findings will be used to create personalized interventions to improve student learning outcomes.

Click image to preview:
Target Audience:

Developing an Online Game to Teach Middle School Students Science Research Practices in the Life Sciences (Collaborative Research: Gagnon, Baker, and Metcalf)

Principal Investigator:

Aqualab is an online video game to teach scientific practices in the context of life sciences for middle school. Students use science practices of experimentation, modeling, and argumentation to investigate questions related to aquatic ecosystems. The project is developing and scaffolding layers of science practices within the gameplay, and exploring how learning progressions can be empirically derived from game data. The findings will be used to create personalized interventions to improve student learning outcomes.

Click image to preview:
Target Audience:

Assessing College-Ready Computational Thinking (Collaborative Research: Brown and Wilson)

Principal Investigator:

This project seeks to develop and validate learning progressions and items with dynamic features to generate machine-scorable student responses for assessing computational thinking, in a test of college-ready critical reasoning skills, and to integrate these items into an existing online assessment system, the Berkeley Assessment System Software (BASS). This assessment is intended to be useful for formative and summative purposes in high-school and introductory college-level STEM classes, including mathematics and computer science courses.

Click image to preview:
Target Audience:

Exploring Experienced Designers' Strategies in a CAD Learning Environment

Computer-aided design (CAD) simulation environments offer opportunities for students to evaluate, redesign, and visualize engineering design solutions quickly and get feedback. However, the use of CAD simulation tools in precollege settings is relatively rare. This study explores design strategies used by experienced designers in Energy3D, a CAD simulation environment designed for learning settings, to provide insight into supporting students' use of CAD simulation environments in precollege settings.
Author/Presenter

Anne M. McAlister

James P. Bywater

Jennifer L. Chiu

Lead Organization(s)
Year
2021
Short Description

This study explores design strategies used by experienced designers in Energy3D, a computer-aided design (CAD) simulation environment designed for learning settings, to provide insight into supporting students' use of CAD simulation environments in precollege settings.

“Zooming In” on Robotics during COVID-19: A Preservice Teacher, an Engineering Student, and a 5th Grader Engineer Robotic Flowers via Zoom

The COVID-19 induced school shutdown dramatically decreased students’ hands-on STEM learning opportunities. An NSF-funded program partnering preservice teachers and undergraduate engineering students to teach robotics to fifth graders was adapted to a virtual format via Zoom. A case study intimately explored one team’s experience as they engineered bio-inspired robots over five weekly sessions. Zoom recordings, written reflections, and lesson slides were analyzed to describe how the virtual context shaped the lesson and influenced the preservice teacher’s experience.

Author/Presenter

Jennifer Kidd

Krishna Kaipa

Kristie Gutierrez

Pilar Pazos

Orlando Ayala

Stacie Ringleb

Lead Organization(s)
Year
2020
Short Description

An NSF-funded program partnering preservice teachers and undergraduate engineering students to teach robotics to fifth graders was adapted to a virtual format via Zoom. A case study intimately explored one team’s experience as they engineered bio-inspired robots over five weekly sessions.

Situating Presence Within Extended Reality for Teacher Training: Validation of the eXtended Reality Presence Scale (XRPS) in Preservice Teacher Use of Immersive 360 Video

The use of video is commonplace for professional preparation in education and other fields. Research has provided evidence that the use of video in these contexts can lead to increased noticing and reflection. However, educators now have access to evolving forms of video such as 360 video. The purpose of this study was to adapt and validate an instrument for assessing immersive 360 video use in an undergraduate preservice teacher university training program.

Author/Presenter

Enrico Gandolfi

Karl W. Kosko

Richard E. Ferdig

Lead Organization(s)
Year
2020
Short Description

The purpose of this study was to adapt and validate an instrument for assessing immersive 360 video use in an undergraduate preservice teacher university training program.

Effect and Influence of Ambisonic Audio in Viewing 360 Video

Research has provided evidence of the value of producing multiple representationsof content for learners (e.g., verbal, visual, etc.). However, much of the research has acknowledged changes in visual technologies while not recognizing or utilizing related audio innovations. For instance, teacher education students who were once taught through two-dimensional video are now being presented with interactive, three-dimensional content (e.g., simulations or 360 video). Users in old and new formats, however, still typically receive monophonic sound.

Author/Presenter

Richard E. Ferdig

Karl W. Kosko

Enrico Gandolfi

Lead Organization(s)
Year
2020
Short Description

Research has provided evidence of the value of producing multiple representationsof content for learners (e.g., verbal, visual, etc.). However, much of the research has acknowledged changes in visual technologies while not recognizing or utilizing related audio innovations. The purpose of this study was to respond to this gap by comparing the outcomes of watching 360 video with either monophonic or ambisonic audio.

Toward a Productive Definition of Technology in Science and STEM Education

The lack of a definition of the T in STEM (science, technology, engineering, and mathematics) acronym is pervasive, and it is often the teachers of STEM disciplines who inherit the task of defining the role of technology within their K-12 classrooms. These definitions often vary significantly, and they have profound implications for curricular and instructional goals within science and STEM classrooms.

Author/Presenter

Joshua Ellis

Jeanna Wieselmann

Ramya Sivaraj

Gillian Roehrig

Emily Dare

Elizabeth Ring-Whalen

Year
2020
Short Description

This theoretical paper summarizes of technology initiatives across science and STEM education from the past 30 years to present perspectives on the role of technology in science-focused STEM education.

Toward a Productive Definition of Technology in Science and STEM Education

The lack of a definition of the T in STEM (science, technology, engineering, and mathematics) acronym is pervasive, and it is often the teachers of STEM disciplines who inherit the task of defining the role of technology within their K-12 classrooms. These definitions often vary significantly, and they have profound implications for curricular and instructional goals within science and STEM classrooms.

Author/Presenter

Joshua Ellis

Jeanna Wieselmann

Ramya Sivaraj

Gillian Roehrig

Emily Dare

Elizabeth Ring-Whalen

Year
2020
Short Description

This theoretical paper summarizes of technology initiatives across science and STEM education from the past 30 years to present perspectives on the role of technology in science-focused STEM education.

Toward a Productive Definition of Technology in Science and STEM Education

The lack of a definition of the T in STEM (science, technology, engineering, and mathematics) acronym is pervasive, and it is often the teachers of STEM disciplines who inherit the task of defining the role of technology within their K-12 classrooms. These definitions often vary significantly, and they have profound implications for curricular and instructional goals within science and STEM classrooms.

Author/Presenter

Joshua Ellis

Jeanna Wieselmann

Ramya Sivaraj

Gillian Roehrig

Emily Dare

Elizabeth Ring-Whalen

Year
2020
Short Description

This theoretical paper summarizes of technology initiatives across science and STEM education from the past 30 years to present perspectives on the role of technology in science-focused STEM education.